skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of Intramolecular Interactions of Cytochrome c Using Hydrogen–Deuterium Exchange-Trapped Ion Mobility Spectrometry–Mass Spectrometry and Molecular Dynamics
Award ID(s):
1654274
PAR ID:
10046119
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Analytical Chemistry
Volume:
89
Issue:
17
ISSN:
0003-2700
Page Range / eLocation ID:
8757 to 8765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrated ion-mobility spectrometry mass spectrometry (IMS-MS) as a powerful tool for interrogating and preserving selective chemistry including non-covalent and host–guest complexes of m -xylene macrocycles formed in solution. The technique readily revealed the unique favorability of a thiourea-containing macrocycle MXT to Zn 2+ to form a dimer complex with the cation in an off-axis sandwich structure having the Zn–S bonds in a tetrahedral coordination environment. Replacing thiourea with urea generates MXU which formed high-order oligomerization with weak binding interactions to neutral DMSO guests detected at every oligomer size. The self-assembly pathway observed for this macrocycle is consistent with the crystalline assembly. Further transformation of urea into squaramide produces MXS, a rare receptor for probing sulfate in solution. Tight complexes were observed for both monomeric and dimeric of MXS in which HSO 4 − bound stronger than SO 4 2− to the host. The position of HSO 4 − at the binding cavity is a 180° inversion of the reported crystallographic SO 4 2− . The MXS dimer formed a prism-like shape with HSO 4 − exhibiting strong contacts with the 8 amine protons of two MXS macrocycles. By eliminating intermolecular interferences, we detected the low energy structures of MXS with collisional cross section (CCS) matching cis – trans and cis – cis squaramides-amines, both were not observed in crystallization trials. The experiments collectively unravel multiple facets of macrocycle chemistry including conformational flexibility, self-assembly and ligand binding; all in one analysis. Our findings illustrate an inexpensive and widely applicable approach to investigate weak but important interactions that define the shape and binding of macrocycles. 
    more » « less
  2. This review focuses on the instrumental development and potential applications of Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (tTIMS/MS) for protein structure elucidation. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Within the realm of drug discovery, high‐throughput experimentation techniques enable the rapid optimization of reactions and expedited generation of drug compound libraries for biological and pharmacokinetic evaluation. Herein we report the development of a segmented flow mass spectrometry‐based platform to enable the rapid exploration of photoredox reactions for early‐stage drug discovery. Specifically, microwell plate‐based photochemical reaction screens were reformatted to segmented flow format to enable delivery to nanoelectrospray ionization‐mass spectrometry analysis. This approach was demonstrated for the late‐stage modification of complex drug scaffolds, as well as the subsequent structure–activity relationship evaluation of synthesized analogs. This technology is anticipated to expand the robust capabilities of photoredox catalysis in drug discovery by enabling high‐throughput library diversification. 
    more » « less