skip to main content


Title: Imaging neuronal structure dynamics using 2‐photon super‐resolution patterned excitation reconstruction microscopy

Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.

 
more » « less
NSF-PAR ID:
10046490
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biophotonics
Volume:
11
Issue:
3
ISSN:
1864-063X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent experimental and theoretical work by our group has shown that the self-organization of the brain serotonergic matrix is strongly driven by the spatiotemporal dynamics of single serotonergic axons (fibers). The trajectories of these axons are often stochastic in character and can be described by step-wise random walks or time-continuous processes (e.g., fractional Brownian motion). The success of these modeling efforts depends on experimental data that can validate the proposed mathematical frameworks and constrain their parameters. In particular, further progress requires reliable experimental tracking of individual serotonergic axons in time and space. Visualizing this dynamic behavior in vivo is currently extremely difficult because of the high axon densities and other resolution limitations. In this study, we used in vitro systems of mouse primary brainstem neurons to examine serotonergic axons with unprecedented spatiotemporal precision. The high-resolution methods included confocal microscopy, STED super-resolution microscopy, and live imaging with holotomography. We demonstrate that the extension of developing serotonergic axons strongly relies on discrete attachments points on other, non-serotonergic neurons. These membrane anchors are remarkably stable but can be stretched into nano-scale tethers that accommodate the axon’s transitions from neuron to neuron, as it advances through neural tissue. We also show that serotonergic axons can be flat (ribbon-like) and produce screw-like rotations along their trajectory, perhaps to accommodate mechanical constraints. We conclude that the stochastic dynamics of serotonergic axons may be conditioned by the stochastic geometry of neural tissue and, consequently, may reflect it. Our current research includes hydrogels to better understand these processes in controlled artificial environments. Since serotonergic axons are nearly unique in their ability to regenerate in the adult mammalian brain and they support neural plasticity, this research not only advances fundamental neuroscience but can also inform efforts to restore injured neural tissue. This research was funded by NSF CRCNS (#1822517 and #2112862), NIMH (#MH117488), and the California NanoSystems Institute. 
    more » « less
  2. Several problems challenge mesoscopic imaging in the brain: 1) Difficulty with positioning high-NA objectives near the brain; 2) Creating a flat imaging window against the surface of the brain; 3) Adjusting the imaging window in the face of changes in swelling and pressure in the brain; 4) Preventing growth of dura and biofilms that obscure the imaging window; 5) Follow-on MRI imaging of the animal post-implantation. We propose here an ultra-large window radiolucent implant to address these issues. Our approach provides a 2 cm diameter window for non-human primates (NHPs) that regulates pressure and employs a stable, strong, and thin design. The system is mechanically modeled and stress-tested to achieve access to the brain by large objectives, with design features that allow for manual repositioning of the imaging lens. To optimize the distance between the objective and the brain, we prioritize a thin implant design. A strong radiolucent implant is created using PEEK plastic, a strong, thermoresistant and biostable material. We heighten strength of the chamber’s attachment to the skull by using titanium screws that are normal to the surface of the bone at each point. The implant design has several parts and contemplates a potential method to maintain pressure on the brain. This method uses an engineered silicone mount to maintain even pressure of the imaging window on the brain’s surface, despite brain motion. The mechanical properties of the silicone are manipulated to closely resemble that of brain tissue to be more biomimetic and act as a cushion for motion. This method also allows for the manual repositioning of the cover slip to create a flat imaging window. Lastly, our approach prevents dural growth by blocking the migration of migratory biofilm-forming cells; we hypothesize that use of dynamic pressure maintenance on the brain is key to this method’s success. We are also investigating methods to elongate the longevity of the implant and imaging site, such as silver sputtering on implants and blue light therapy. These methods have produced an ultra-large field of view with 2P image results in <60,000 neurons. As such the chambers are expected to enhance recording window longevity and may prove to be a critical advance in NHP and human brain imaging. 
    more » « less
  3. Several problems challenge mesoscopic imaging in the brain: 1) Difficulty with positioning high-NA objectives near the brain; 2) Creating a flat imaging window against the surface of the brain; 3) Adjusting the imaging window in the face of changes in swelling and pressure in the brain; 4) Preventing growth of dura and biofilms that obscure the imaging window; 5) Follow-on MRI imaging of the animal post-implantation. We propose here an ultra-large window radiolucent implant to address these issues. Our approach provides a 2 cm diameter window for non-human primates (NHPs) that regulates pressure and employs a stable, strong, and thin design. The system is mechanically modeled and stress-tested to achieve access to the brain by large objectives, with design features that allow for manual repositioning of the imaging lens. To optimize the distance between the objective and the brain, we prioritize a thin implant design. A strong radiolucent implant is created using PEEK plastic, a strong, thermoresistant and biostable material. We heighten strength of the chamber’s attachment to the skull by using titanium screws that are normal to the surface of the bone at each point. The implant design has several parts and contemplates a potential method to maintain pressure on the brain. This method uses an engineered silicone mount to maintain even pressure of the imaging window on the brain’s surface, despite brain motion. The mechanical properties of the silicone are manipulated to closely resemble that of brain tissue to be more biomimetic and act as a cushion for motion. This method also allows for themanual repositioning of the cover slip to create a flat imaging window. Lastly, our approach prevents dural growth by blocking the migration of migratory biofilm-forming cells; we hypothesize that use of dynamic pressure maintenance on the brain is key to this method’s success. We are also investigating methods to elongate the longevity of the implant and imaging site, such as silver sputtering on implants and blue light therapy. These methods have produced an ultra-large field of view with 2P image results in <60,000 neurons. As such the chambers are expected to enhance recording window longevity and may prove to be a critical advance in NHP and human brain imaging. 
    more » « less
  4. Imaging sub-diffraction dynamics of neural nanostructures involved in behaviors such as learning and memory in a freely moving animal is not possible with existing techniques. Here, we present a solution in the form of a two-photon (2P), fiber-coupled, stimulated emission depletion microscope and demonstrate its capabilities by acquiring super-resolution imaging of mammalian cells. A polarization-maintaining fiber is used to transport both the 2P excitation light (915 nm) and the donut-shaped depletion beam (592 nm), which is constructed by adding two temporally incoherent and orthogonally polarized Hermite–Gaussian fiber modes. The fiber output is insensitive to bending or temperature changes and is the first demonstration toward deep tissue super-resolution imaging in awake behaving animals. 
    more » « less
  5. Light-sheet microscopes must compromise among field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide higher resolution, but their narrow depth of field inefficiently captures the fluorescence signal generated throughout the thickness of the illumination light sheet when imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet. This extension of the DOF uses a phase mask to axially stretch the point-spread function of the objective lens while largely preserving lateral resolution. This matching of the detection DOF to the illumination-sheet thickness increases the total fluorescence collection, reduces the background, and improves the overall signal-to-noise ratio (SNR), as shown by numerical simulations, imaging of bead phantoms, and imaging living animals. In comparison to conventional light sheet imaging with low-NA detection that yields equivalent DOF, the results show that ExD-SPIM increases the SNR by more than threefold and dramatically reduces the rate of photobleaching. Compared to conventional high-NA detection, ExD-SPIM improves the signal sensitivity and volumetric coverage of whole-brain activity imaging, increasing the number of detected neurons by over a third. 
    more » « less