skip to main content


Title: Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes: SOUTHERN OCEAN ARGO O 2 AIR-SEA FLUXES
NSF-PAR ID:
10046564
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
122
Issue:
11
ISSN:
2169-9275
Page Range / eLocation ID:
8661 to 8682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Air‐sea exchange of carbon dioxide (CO2) in the Southern Ocean plays an important role in the global carbon budget. Previous studies have suggested that flow around topographic features of the Southern Ocean enhances the upward supply of carbon from the deep to the surface, influencing air‐sea CO2exchange. Here, we investigate the role of seafloor topography on the transport of carbon and associated air‐sea CO2flux in an idealized channel model. We find elevated CO2outgassing upstream of a seafloor ridge, driven by anomalous advection of dissolved inorganic carbon. Argo‐like Lagrangian particles in our channel model sample heterogeneously in the vicinity of the seafloor ridge, which could impact float‐based estimates of CO2flux.

     
    more » « less
  2. Abstract

    We report the significant impact of near‐inertial waves (NIWs) on vertical mixing and air‐sea carbon dioxide (CO2) fluxes in the Southern Ocean using a biogeochemical model coupled to an eddy‐rich ocean circulation model. The effects of high‐frequency processes are quantified by comparing the fully coupled solution (ONLINE) to two offline simulations based on 5‐day‐averaged output of the ONLINE simulation: one that uses vertical mixing archived from the ONLINE model (CTRL) and another in which vertical mixing is recomputed from the 5‐day average hydrodynamic fields (5dAVG). In this latter simulation, processes with temporal variabilities of a few days including NIWs are excluded in the biogeochemical simulation. Suppression of these processes reduces vertical shear and vertical mixing in the upper ocean, leading to decreased supply of carbon‐rich water from below, less CO2outgassing in austral winter, and more uptake in summer. The net change amounts up to one third of the seasonal variability in Southern Ocean CO2flux. Our results clearly demonstrate the importance of resolving high‐frequency processes such as NIWs to better estimate the carbon cycle in numerical model simulations.

     
    more » « less
  3. null (Ed.)
    Abstract Proposals from multiple nations to deploy air–sea flux moorings in the Southern Ocean have raised the question of how to optimize the placement of these moorings in order to maximize their utility, both as contributors to the network of observations assimilated in numerical weather prediction and also as a means to study a broad range of processes driving air–sea fluxes. This study, developed as a contribution to the Southern Ocean Observing System (SOOS), proposes criteria that can be used to determine mooring siting to obtain best estimates of net air–sea heat flux ( Q net ). Flux moorings are envisioned as one component of a multiplatform observing system, providing valuable in situ point time series measurements to be used alongside satellite data and observations from autonomous platforms and ships. Assimilating models (e.g., numerical weather prediction and reanalysis products) then offer the ability to synthesize the observing system and map properties between observations. This paper develops a framework for designing mooring array configurations to maximize the independence and utility of observations. As a test case, within the meridional band from 35° to 65°S we select eight mooring sites optimized to explain the largest fraction of the total variance (and thus to ensure the least variance of residual components) in the area south of 20°S. Results yield different optimal mooring sites for low-frequency interannual heat fluxes compared with higher-frequency subseasonal fluxes. With eight moorings, we could explain a maximum of 24.6% of high-frequency Q net variability or 44.7% of low-frequency Q net variability. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The Southern Ocean (SO) connects major ocean basins and hosts large air‐sea carbon fluxes due to the resurfacing of deep nutrient and carbon‐rich waters. While wind‐induced turbulent mixing in the SO mixed layer is significant for air‐sea fluxes, the importance of the orders‐of‐magnitude weaker background mixing below is less well understood. The direct impact of altering background mixing on tracers, as opposed to the response due to a longer‐term change in large‐scale ocean circulation, is also poorly studied. Topographically induced upward propagating lee waves, wind‐induced downward propagating waves generated at the base of the mixed layer, shoaling of southward propagating internal tides, and turbulence under sea ice are among the processes known to induce upper ocean background turbulence but typically are not represented in models. Here, we show that abruptly altering the background mixing in the SO over a range of values typically used in climate models (m2 s−1m2 s−1) can lead to a ∼70% change in annual SO air‐sea CO2fluxes in the first year of perturbations, and around a ∼40% change in annual SO air‐sea CO2fluxes over the 6‐year duration of the experiment, with even greater changes on a seasonal timescale. This is primarily through altering the temperature and the dissolved inorganic carbon and alkalinity distribution in the surface water. Given the high spatiotemporal variability of processes that induce small‐scale background mixing, this work demonstrates the importance of their representation in climate models for accurate simulation of global biogeochemical cycles.

     
    more » « less