skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing Mooring Placement to Constrain Southern Ocean Air–Sea Fluxes
Abstract Proposals from multiple nations to deploy air–sea flux moorings in the Southern Ocean have raised the question of how to optimize the placement of these moorings in order to maximize their utility, both as contributors to the network of observations assimilated in numerical weather prediction and also as a means to study a broad range of processes driving air–sea fluxes. This study, developed as a contribution to the Southern Ocean Observing System (SOOS), proposes criteria that can be used to determine mooring siting to obtain best estimates of net air–sea heat flux ( Q net ). Flux moorings are envisioned as one component of a multiplatform observing system, providing valuable in situ point time series measurements to be used alongside satellite data and observations from autonomous platforms and ships. Assimilating models (e.g., numerical weather prediction and reanalysis products) then offer the ability to synthesize the observing system and map properties between observations. This paper develops a framework for designing mooring array configurations to maximize the independence and utility of observations. As a test case, within the meridional band from 35° to 65°S we select eight mooring sites optimized to explain the largest fraction of the total variance (and thus to ensure the least variance of residual components) in the area south of 20°S. Results yield different optimal mooring sites for low-frequency interannual heat fluxes compared with higher-frequency subseasonal fluxes. With eight moorings, we could explain a maximum of 24.6% of high-frequency Q net variability or 44.7% of low-frequency Q net variability.  more » « less
Award ID(s):
1658001 1936222
PAR ID:
10226359
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
37
Issue:
8
ISSN:
0739-0572
Page Range / eLocation ID:
1365 to 1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is great interest in improving our understanding of the respective roles of the ocean and atmosphere in variability and change in weather and climate. Due to the sparsity of sustained observing sites in the open ocean, information about the air–sea exchanges of heat, freshwater, and momentum is often drawn from models. In this paper observations from three long-term surface moorings deployed in the trade wind regions of the Pacific and Atlantic Oceans are used to compare observed means and low-passed air–sea fluxes from the moorings with coincident records from three atmospheric reanalyses (ERA5, NCEP-2, and MERRA-2) and from CMIP6 coupled models. To set the stage for the comparison, the methodologies of maintaining the long-term surface moorings, known as ocean reference stations (ORS), and assessing the accuracies of their air–sea fluxes are described first. Biases in the reanalyses’ means and low-passed wind stresses and net air–sea heat fluxes are significantly larger than the observational uncertainties and in some case show variability in time. These reanalyses and most CMIP6 models fail to provide as much heat into the ocean as observed. In the discussion and conclusions section, long-term observing sites in the open ocean are seen as essential, independent benchmarks not only to document the coupling between the atmosphere and ocean but also to promote collaborative efforts to assess and improve the ability of models to simulate air–sea fluxes. 
    more » « less
  2. Southern Ocean air–sea fluxes are a critical component of the climate system but are historically undersampled due to the remoteness of the region. While much focus has been placed on interannual flux variability, it has become increasingly clear that high-frequency fluctuations, driven by processes like storms and (sub-)mesoscale eddies, play a nonnegligible role in longer-term changes. Therefore, collecting high-resolution in situ flux observations is crucial to better understand the dynamics operating at these scales, as well as their larger-scale impacts. Technological advancements, including the development of new uncrewed surface vehicles, provide the opportunity to increase sampling at small scales. However, determining where and when to deploy such vehicles is not trivial. This study, conceived by the Air–Sea Fluxes working group of the Southern Ocean Observing System, aims to characterize the statistics of high-frequency air–sea flux variability. Using statistical analyses of atmospheric reanalysis data, numerical model output, and mooring observations, we show that there are regional and seasonal variations in the magnitude and sign of storm- and eddy-driven air–sea flux anomalies, which can help guide the planning of field campaigns and deployment of uncrewed surface vehicles in the Southern Ocean. 
    more » « less
  3. Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation. 
    more » « less
  4. The NOAA Pacific Marine Environmental Laboratory (PMEL) Ocean Climate Stations (OCS) project provides in situ measurements for quantifying air-sea interactions that couple the ocean and atmosphere. The project maintains two OceanSITES surface moorings in the North Pacific, one at the Kuroshio Extension Observatory in the Northwest Pacific subtropical recirculation gyre and the other at Station Papa in the Northeast Pacific subpolar gyre. OCS mooring time series are used as in situ references for assessing satellite and numerical weather prediction models. A spinoff of the PMEL Tropical Atmosphere Ocean (TAO) project, OCS moorings have acted as “research aggregating devices.” Working with and attracting wide-ranging partners, OCS scientists have collected process-oriented observations of variability on diurnal, synoptic, seasonal, and interannual timescales associated with anthropogenic climate change. Since 2016, they have worked to expand, test, and verify the observing capabilities of uncrewed surface vehicles and to develop observing strategies for integrating these unique, wind-powered observing platforms within the tropical Pacific and global ocean observing system. PMEL OCS has been at the center of the UN Decade of Ocean Sciences for Sustainable Development (2021–2030) effort to develop an Observing Air-Sea Interactions Strategy (OASIS) that links an expanded network of in situ air-sea interaction observations to optimized satellite observations, improved ocean and atmospheric coupling in Earth system models, and ultimately improved ocean information across an array of essential climate variables for decision-makers. This retrospective highlights not only achievements of the PMEL OCS project but also some of its challenges. 
    more » « less
  5. "The Southern Ocean Surface Mooring is co-located with Southern Ocean Profiler Mooring at the Apex site. Two identical Flanking Moorings make up the equidistant sides of a triangle of Moorings (50 km) from the Apex site. The Surface Mooring is located in 4,800 meters of water in the Southern Ocean, SW of Chile. The triangular configuration moorings provide unique spatial array through which instruments fixed to moorings continuously collect data through time and gliders sample the area between the moorings. The Southern Ocean site is one of four high latitude open ocean locations in the OOI that provide observations to gain better insight into global ocean circulation and climate. In particular instruments on the Surface Buoy will provide key insights into climate dynamics associated with air-sea fluxes. The Southern Ocean Surface Mooring is specifically designed to examine global phenomena as well as withstand rough sea conditions associated with high latitude, deep, open ocean sites. The Surface Mooring contains instruments attached to a Surface Buoy floating on the sea surface, Near Surface Instrument Frame 12 meters below the surface, and instruments attached to the Mooring Riser at fixed depths through the water column. The Surface Buoy provides a platform on which to secure surface instruments above the sea surface, below the sea surface, and across the interface between. Additionally the Surface Buoy contains antennas to transmit data to shore via satellite." 
    more » « less