skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Progress in Organocatalytic Asymmetric Domino Transformations
Abstract Sustainability in chemical synthesis is a major aspect of the current synthetic endeavors and, therefore, mimicking the biological process in the laboratory nowadays has the highest priority. Towards achieving this goal, designing organic reactions in domino mode rather than the multistep synthetic pathways and using organocatalysis instead of metal catalysis have received a lot of attention due to the inherent advantages of these processes in terms of synthetic efficiency and sustainability. As a result, the field of asymmetric organocatalytic domino reactions has witnessed tremendous progress in recent years. This review attempts to summarize the latest developments in asymmetric organocatalyzed domino reactions since 2012, with the emphasis on the catalysts and reaction modes. Discussions on the reaction mechanisms and the applications of the developed domino reaction methods in the synthesis of biologically active molecules and natural products are also included when appropriate. magnified image  more » « less
Award ID(s):
1664278
PAR ID:
10046797
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Synthesis & Catalysis
Volume:
360
Issue:
1
ISSN:
1615-4150
Format(s):
Medium: X Size: p. 2-79
Size(s):
p. 2-79
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The diastereodivergent synthesis of bridged 1,2,3,4‐tetrahydroisoquinoline derivatives has been achieved by using appropriate modularly designed organocatalysts (MDOs) that are self‐assembled in situ from amino acids and cinchona alkaloid derivatives. The domino Mannich/aza‐Michael/aldol reaction between (E)‐2‐[2‐(3‐aryl‐3‐oxoprop‐1‐en‐1‐yl)phenyl]acetaldehydes and ethyl or benzyl (E)‐2‐[(4‐methoxyphenyl)imino]acetates catalyzed by MDOs gives two different diastereomers of the desired bridged tetrahydroisoquinolines in good yields and excellent diastereoselectivities (up to 99:1 dr) and enantioselectivities (up to >99%ee). The diastereodivergence was achieved in the aldol reaction step. magnified image 
    more » « less
  2. Abstract Phosphorus‐containing compounds have a long history of utility in a broad range of fields, including agricultural, pharmaceutical, and metal‐mediated reactions. In recent decades, numerous methods have been developed to streamline the synthesis of organophosphorus reagents based on these numerous applications. This review focuses upon the recent development of phosphorus(III)‐ and phosphorus(V)‐directed C−H borylation reactions. This transformation has evolved significantly in the past two years, resulting in several new methods that provide access to organic substrates containing both phosphorus and boron. Further functionalization of the carbon−boron bond to provide functionalized organophosphorus products is discussed. magnified image 
    more » « less
  3. Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image 
    more » « less
  4. Abstract Pseudocyclic β‐trifluorosulfonyloxy vinylbenziodoxolones were prepared starting from hydroxybenziodoxolones and alkynes in the presence of trifluoromethanesulfonic acid. The reaction of these compounds with azide anion leads to β‐azido vinylbenziodoxolones as products of vinylic nucleophilic substitution in which addition‐elimination reactions occur and the double bond configuration is retained. The structures of β‐trifluorosulfonyloxy vinylbenziodoxolone and β‐azido vinylbenziodoxolone were established by single crystal X‐ray diffraction. magnified image 
    more » « less
  5. Abstract Direct preparation of alkylated amide‐derivatives by cross‐coupling chemistry using sustainable protocols is challenging due to sensitivity of the amide functional group to reaction conditions. Herein, we report the synthesis of alkyl‐substituted amides by iron‐catalyzed C(sp2)−C(sp3) cross‐coupling of Grignard reagents with aryl chlorides. The products of these reactions are broadly used in the synthesis of pharmaceuticals, agrochemicals and other biologically‐active molecules. Furthermore, amides are used as versatile intermediates that can participate in the synthesis of valuable ketones and amines, providing access to motifs of broad synthetic interest. The reaction is characterized by its good substrate scope, tolerating a range of amide substitution, including sterically‐bulky, sensitive and readily modifiable amides. The reaction is compatible with challenging organometallics possessing β‐hydrogens, and proceeds under very mild, operationally‐simple conditions. Optimization of the catalyst system demonstrated the beneficial effect of O‐coordinating ligands on the cross‐coupling. The reaction was found to be fully chemoselective for the mono‐substitution at the less sterically‐hindered position. Mechanistic studies establish the order of reactivity and provide insight into the role of amide to control mono‐selectivity of the alkylation. The protocol provides the possibility for convenient access to alkyl‐amide structural building blocks using sustainable cross‐coupling conditions with high efficiency. magnified image 
    more » « less