skip to main content


Title: Phosphorus‐Directed C−H Borylation
Abstract

Phosphorus‐containing compounds have a long history of utility in a broad range of fields, including agricultural, pharmaceutical, and metal‐mediated reactions. In recent decades, numerous methods have been developed to streamline the synthesis of organophosphorus reagents based on these numerous applications. This review focuses upon the recent development of phosphorus(III)‐ and phosphorus(V)‐directed C−H borylation reactions. This transformation has evolved significantly in the past two years, resulting in several new methods that provide access to organic substrates containing both phosphorus and boron. Further functionalization of the carbon−boron bond to provide functionalized organophosphorus products is discussed.

magnified image

 
more » « less
Award ID(s):
1764307
NSF-PAR ID:
10452189
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Synthesis & Catalysis
Volume:
363
Issue:
9
ISSN:
1615-4150
Page Range / eLocation ID:
p. 2354-2365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Indole is one of the most important heterocycles in organic synthesis, natural products, and drug discovery. Recently, tremendous advances in the selective functionalization of indoles have been reported. Although the most important advances have been powered by transition metal catalysis, exceedingly useful methods in the absence of transition metals have also been reported. In this review, we provide an overview of functionalization reactions of indoles that have been published in the last years with a focus on the most recent advances, aims, and future trends. The review is organized by the positional selectivity and type of methods used for functionalization. In particular, we discuss major advances in transition‐metal‐catalyzed C−H functionalization at the classical C2/C3 positions, transition‐metal‐catalyzed C−H functionalization at the remote C4/C7 positions, transition‐metal‐catalyzed cross‐coupling, and transition‐metal‐free functionalization.

    magnified image

     
    more » « less
  2. Abstract

    Membrane contact sites (MCSs) are specialized subcellular compartments formed by closely apposed membranes from two organelles. The intermembrane gap is separated by a distance ranging from 10 to 35 nm. MCSs are typically maintained through dynamic protein–protein and protein–lipid interactions. These intermembrane contact sites constitute important intracellular signalling hotspots to mediate a plethora of cellular processes, including calcium homeostasis, lipid metabolism, membrane biogenesis and organelle remodelling. In recent years, a series of genetically encoded probes and chemogenetic or optogenetic actuators have been invented to aid the visualization and interrogation of MCSs in both fixed and living cells. These molecular tools have greatly accelerated the pace of mechanistic dissection of membrane contact sites at the molecular level. In this review, we present an overview on the latest progress in this endeavour, and provide a general guide to the selection of methods and molecular tools for probing interorganellar membrane contact sites.image

     
    more » « less
  3. Abstract

    Facile reduction of aryl halides with a combination of 5% Pd/C, B2(OH)4, and 4‐methylmorpholine is reported. Aryl bromides, iodides, and chlorides were efficiently reduced. Aryl dihalides containing two different halogen atoms underwent selective reduction: I over Br and Cl, and Br over Cl. Beyond these, aryl triflates were efficiently reduced. This combination was broadly general, effectuating reductions of benzylic halides and ethers, alkenes, alkynes, aldehydes, and azides, as well as forN‐Cbz deprotection. A cyano group was unaffected, but a nitro group and a ketone underwent reduction to a low extent. When B2(OD)4was used for aryl halide reduction, a significant amount of deuteriation occurred. However, H atom incorporation competed and increased in slower reactions. 4‐Methylmorpholine was identified as a possible source of H atoms in this, but a combination of only 4‐methylmorpholine and Pd/C did not result in reduction. Hydrogen gas has been observed to form with this reagent combination. Experiments aimed at understanding the chemistry led to the proposal of a plausible mechanism and to the identification ofN,N‐bis(methyl‐d3)pyridin‐4‐amine (DMAP‐d6) and B2(OD)4as an effective combination for full aromatic deuteriation.

    magnified image

     
    more » « less
  4. Abstract

    Direct preparation of alkylated amide‐derivatives by cross‐coupling chemistry using sustainable protocols is challenging due to sensitivity of the amide functional group to reaction conditions. Herein, we report the synthesis of alkyl‐substituted amides by iron‐catalyzed C(sp2)−C(sp3) cross‐coupling of Grignard reagents with aryl chlorides. The products of these reactions are broadly used in the synthesis of pharmaceuticals, agrochemicals and other biologically‐active molecules. Furthermore, amides are used as versatile intermediates that can participate in the synthesis of valuable ketones and amines, providing access to motifs of broad synthetic interest. The reaction is characterized by its good substrate scope, tolerating a range of amide substitution, including sterically‐bulky, sensitive and readily modifiable amides. The reaction is compatible with challenging organometallics possessing β‐hydrogens, and proceeds under very mild, operationally‐simple conditions. Optimization of the catalyst system demonstrated the beneficial effect of O‐coordinating ligands on the cross‐coupling. The reaction was found to be fully chemoselective for the mono‐substitution at the less sterically‐hindered position. Mechanistic studies establish the order of reactivity and provide insight into the role of amide to control mono‐selectivity of the alkylation. The protocol provides the possibility for convenient access to alkyl‐amide structural building blocks using sustainable cross‐coupling conditions with high efficiency.

    magnified image

     
    more » « less
  5. Abstract

    In the last 20 years, efficient transition metal catalysts for the α‐arylation of enolates have been introduced. Despite the popularity and utility of these reactions, there remains room for improvement (reduced costs, elimination of transition metals and specialized ligands). Herein is reported a general, scalable and green method for aroylation of simple diarylmethane pronucleophiles through direct acyl C−N cleavage ofN‐Bn−N‐Boc arylamides andN‐acylpyrroles under transition metal‐free conditions. Importantly, a 1 : 1 ratio of the amide to the pronucleophile is employed. Unlike use of Weinreb amides, this method avoids preformed organometallics (organolithium and Grignard reagents) and does not employ cryogenic temperatures, which are difficult and costly to achieve on scale. The operationally simple protocol provides straightforward access to a variety of sterically and electronically diverse 1,2,2‐triarylethanones, a group of compounds with high‐value in medicinal chemistry.

    magnified image

     
    more » « less