skip to main content


Title: Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus
Abstract

Escalation (macroevolutionary increase) or divergence (disparity between relatives) in trait values are two frequent outcomes of the plant‐herbivore arms race. We studied the defences and caterpillars associated with 21 sympatric New Guinean figs. Herbivore generalists were concentrated on hosts with low protease and oxidative activity. The distribution of specialists correlated with phylogeny, protease and trichomes. Additionally, highly specialisedAsotamoths used alkaloid rich plants. The evolution of proteases was conserved, alkaloid diversity has escalated across the studied species, oxidative activity has escalated within one clade, and trichomes have diverged across the phylogeny. Herbivore specificity correlated with their response to host defences: escalating traits largely affected generalists and divergent traits specialists; but the effect of escalating traits on extreme specialists was positive. In turn, the evolution of defences inFicuscan be driven towards both escalation and divergence in individual traits, in combination providing protection against a broad spectrum of herbivores.

 
more » « less
NSF-PAR ID:
10046873
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
21
Issue:
1
ISSN:
1461-023X
Page Range / eLocation ID:
p. 83-92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Premise

    The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to‐date has examined pitcher evolution from a quantitative morphometric perspective.

    Methods

    In the present study, we used comparative morphometric approaches to quantify the shape space occupied byHeliamphorapitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments.

    Results

    Our results showed thatHeliamphorapitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers.

    Conclusions

    Overall, our study demonstrates that diversification and convergent evolution of carnivory‐related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.

     
    more » « less
  2. Abstract

    Antagonistic coevolution between natural enemies can produce highly exaggerated traits, such as prey toxins and predator resistance. This reciprocal process of adaptation and counter‐adaptation may also open doors to other evolutionary novelties not directly involved in the phenotypic interface of coevolution. We tested the hypothesis that predator–prey coevolution coincided with the evolution of conspicuous coloration on resistant predators that retain prey toxins. In western North America, common garter snakes (Thamnophis sirtalis) have evolved extreme resistance to tetrodotoxin (TTX) in the coevolutionary arms race with their deadly prey, Pacific newts (Tarichaspp.). TTX‐resistant snakes can retain large amounts of ingested TTX, which could serve as a deterrent against the snakes' own predators if TTX toxicity and resistance are coupled with a conspicuous warning signal. We evaluated whether arms race escalation covaries with bright red coloration in snake populations across the geographic mosaic of coevolution. Snake colour variation departs from the neutral expectations of population genetic structure and covaries with escalating clines of newt TTX and snake resistance at two coevolutionary hotspots. In the Pacific Northwest, bright red coloration fits an expected pattern of an aposematic warning to avian predators: TTX‐resistant snakes that consume highly toxic newts also have relatively large, reddish‐orange dorsal blotches. Snake coloration also seems to have evolved with the arms race in California, but overall patterns are less intuitively consistent with aposematism. These results suggest that interactions with additional trophic levels can generate novel traits as a cascading consequence of arms race coevolution across the geographic mosaic.

     
    more » « less
  3. Abstract Aim

    To quantify the relative contributions of local community assembly processes versus γ‐diversity to β‐diversity, and to assess how spatial scale and anthropogenic disturbance (i.e. nutrient enrichment) interact to dictate which driver dominates.

    Location

    France and the United States.

    Time period

    1993–2011.

    Major taxa studied

    Freshwater stream diatoms.

    Methods

    β‐diversity along a nutrient enrichment gradient was examined across multiple spatial scales. β‐diversity was estimated using multi‐site Sørensen dissimilarity. We assessed the relative importance of specialists versus generalists using Friedley coefficient, and the contribution of local community assembly versus γ‐diversity to β‐diversity across spatial scales, with a null model. Finally, we estimated the response of β‐diversity to environmental and spatial factors by testing the correlations between community, environmental and geographical distance matrices with partial Mantel tests.

    Results

    β‐diversity generally increased with spatial scale but the rate of increase depended on nutrient enrichment level. β‐diversity decreased significantly with increasing nutrient enrichment level due to the loss of specialist species. Local assembly was an important driver of β‐diversity especially under low nutrient enrichment. Significant partial Mantel correlations were observed between diatom β‐diversity and pure environmental distances under these conditions, highlighting the role of species sorting in local assembly processes. Conversely, in heavily enriched sites, only spatial distances were significantly correlated with β‐diversity, which indicated a substantial role of dispersal processes.

    Main conclusions

    Nutrient concentration mediated the expected increase in β‐diversity with spatial scales. Across spatial scales, β‐diversity was more influenced by local assembly processes rather than by γ‐diversity. Nutrient enrichment was associated with an overall decline in diatom β‐diversity and a shift in assembly processes from species sorting to dispersal, notably due to the elimination of some specialists and their subsequent replacement by generalists.

     
    more » « less
  4. Abstract

    Host specificity is a fundamental life history trait of symbionts and exists on a broad continuum from symbionts that are specific to one or a few hosts (host specialists), to those associated with multiple different host species (host generalists). However, the biological mechanisms underlying the complexity and wide variation in symbiont host specificity are poorly understood from both the symbiont and host perspectives across many symbiotic systems.

    Feather mites are common avian symbionts that vary in their host specificity from extreme host generalists to host specialists, even among species within the same genus.

    Here, we measured and compared survival probability and rate of dispersal to determine how these traits differ between two species of feather mites in the same genus: one host generalist associated with 17 host species (Amerodectes ischyros) and one host specialist with only one known host (A. protonotaria).

    We initially predicted that the host generalist would live longer and disperse more rapidly but discovered that while the host generalist mite survived longer, the host specialist mite dispersed more quickly.

    The differing environmental and ecological conditions in which the hosts of these mites are associated may explain the survival and dispersal patterns we uncovered, as differential microclimates may have led to different selective pressures on each species of mite. We also noted mite behavioural observations and suggest experiments to extend our understanding of feather mite ecology and evolution.

     
    more » « less
  5. Abstract Aim

    Studies on latitudinal patterns in plant defence have traditionally overlooked the potential effect that resource availability may have in shaping plant defence. Likewise, latitudinal patterns of tolerance traits have rarely been studied, yet they can be a critical component of plant defence. Therefore, the aim of our study was to examine latitudinal variation in the production of tolerance and resistance traits against herbivory along a latitudinal range and a natural gradient of resource availability from upwelling conditions.

    Location

    North America (Canada, USA, Mexico).

    Time period

    Summer months of 2015.

    Major taxa used

    The seagrassZostera marina.

    Methods

    We conducted experiments simulating macroherbivore (e.g., bird, fish) damage on the seagrassZ. marinaat 10 sites across the Eastern Pacific coast (Canada–Mexico) and Quebec and analysed several traits related to resistance and tolerance strategies against herbivory. In addition, we examined the effects of potential seagrass changes in defence strategies by performing a series of feeding experiments with mesoherbivores in a subset of sites.

    Results

    We found that eelgrass resistance defences did not follow a linear latitudinal pattern but rather followed a bell‐shaped curve which correlated with bottom‐up control. In sites with higher nutrient availability, plants allocated resources to tolerance strategies and had lower resistance traits. Furthermore, seagrasses did not respond linearly to increased herbivory pressure; while they tolerated moderate levels of herbivory, they underwent a significant reduction in tolerance and resistance under high herbivory levels, which also made them more susceptible to consumers in feeding experiments.

    Main conclusions

    Our results highlight the importance that nutrient availability has in shaping latitudinal patterns of plant defence against herbivory and show how these defences may not respond linearly to increased herbivory pressure in seagrasses.

     
    more » « less