skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Replicated radiations in the South American marsh pitcher plants ( Heliamphora ) lead to convergent carnivorous trap morphologies
Abstract PremiseThe evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to‐date has examined pitcher evolution from a quantitative morphometric perspective. MethodsIn the present study, we used comparative morphometric approaches to quantify the shape space occupied byHeliamphorapitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. ResultsOur results showed thatHeliamphorapitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. ConclusionsOverall, our study demonstrates that diversification and convergent evolution of carnivory‐related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.  more » « less
Award ID(s):
1553114
PAR ID:
10498032
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
American Journal of Botany
Volume:
110
Issue:
10
ISSN:
0002-9122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT AimEcological theory suggests that dispersal limitation and selection by climatic factors influence bacterial community assembly at a continental scale, yet the conditions governing the relative importance of each process remains unclear. The carnivorous pitcher plantSarracenia purpureaprovides a model aquatic microecosystem to assess bacterial communities across the host plant's north–south range in North America. This study determined the relative influences of dispersal limitation and environmental selection on the assembly of bacterial communities inhabitingS. purpureapitchers at the continental scale. LocationEastern United States and Canada. Time Period2016. Major Taxa StudiedBacteria inhabitingS. purpureapitchers. MethodsPitcher morphology, fluid, inquilines and prey were measured, and pitcher fluid underwent DNA sequencing for bacterial community analysis. Null modelling of β‐diversity provided estimates for the contributions of selection and dispersal limitation to community assembly, complemented by an examination of spatial clustering of individuals. Phylogenetic and ecological associations of co‐occurrence network module bacteria was determined by assessing the phylogenetic diversity and habitat preferences of member taxa. ResultsDispersal limitation was evident from between‐site variation and spatial aggregation of individual bacterial taxa in theS. purpureapitcher system. Selection pressure was weak across the geographic range, yet network module analysis indicated environmental selection within subgroups. A group of aquatic bacteria held traits under selection in warmer, wetter climates, and midge abundance was associated with selection for traits held by a group of saprotrophs. Processes that increased pitcher fluid volume weakened selection in one module, possibly by supporting greater bacterial dispersal. ConclusionDispersal limitation governed bacterial community assembly inS. purpureapitchers at a continental scale (74% of between‐site comparisons) and was significantly greater than selection across the range. Network modules showed evidence for selection, demonstrating that multiple processes acted concurrently in bacterial community assembly at the continental scale. 
    more » « less
  2. Abstract An ongoing challenge in macroevolutionary research is identifying common drivers of diversification amid the complex interplay of many potentially relevant traits, ecological contexts, and intrinsic characteristics of clades. In this study, we used geometric morphometric and phylogenetic comparative methods to evaluate the tempo and mode of morphological evolution in an adaptive radiation of Malagasy birds, the vangas, and their mainland relatives (Aves:Vangidae). The Malagasy radiation is more diverse in both skull and foot shape. However, rather than following the classic “early burst” of diversification, trait evolution accelerated well after their arrival in Madagascar, likely driven by the evolution of new modes of foraging and especially of a few species with highly divergent morphologies. Anatomical regions showed differing evolutionary patterns, and the presence of morphological outliers impacted the results of some analyses, particularly of trait integration and modularity. Our results demonstrate that the adaptive radiation of Malagasy vangas has evolved exceptional ecomorphological diversity along multiple, independent trait axes, mainly driven by a late expansion in niche space due to key innovations. Our findings highlight the evolution of extreme forms as an overlooked feature of adaptive radiation warranting further study. 
    more » « less
  3. Nguyen, Nhu H (Ed.)
    ABSTRACT Across diverse ecosystems, bacteria and their hosts engage in complex relationships having negative, neutral, or positive interactions. However, the specific effects of leaf-associated bacterial community functions on plant growth are poorly understood. Although microbes can promote plant growth through various biochemical mechanisms, investigating the community’s functional contributions to plant growth remains to be explored. To address this gap, we characterized the relationships between bacterial community function and host plant growth in the purple pitcher plant (Sarracenia purpurea). The main aim of our research was to investigate how different bacterial community functions affect the growth and nutrient content in the plant. Previous research has suggested that microbial communities aid in prey decomposition and subsequent nutrient acquisition in carnivorous plants, includingS. purpurea. However, the specific functional roles of bacterial communities in plant growth and nutrient uptake are not well known. In this study, sterile, freshly opened pitchers were inoculated with three functionally distinct, pre-assembled bacterial communities. Bacterial community composition and function were measured over 8 weeks using physiological assays, metagenomics, and metatranscriptomics. Distinct community functions affected plant traits; a bacterial community enriched in decomposition was associated with larger leaves with almost double the biomass of control pitchers. Physiological differences in bacterial communities were supported by metatranscriptomics; for example, the bacterial community with the highest chitinase activity had greater expression of transcripts associated with chitinase enzymes. The relationship between bacterial community function and plant growth observed here indicates potential mechanisms, such as chitinase activity, for host-associated bacterial functions to support pitcher plant growth. IMPORTANCEThis study addresses a gap in understanding the relationships between bacterial community function and plant growth. We inoculated sterile, freshly opened pitcher plant leaves with three functionally distinct bacterial communities to uncover potential mechanisms through which bacterial functions support plant health and growth. Our findings demonstrate that distinct community functions significantly influence plant traits, with some bacterial communities supporting more plant growth than in control pitchers. These results highlight the ecological roles of microbial communities in plants and thus ecosystems and suggest that nutrient cycling is an important pathway through which microbes support host plant health. This research provides valuable insights into plant-microbe interactions and the effects of diverse microbial community functions. 
    more » « less
  4. Abstract PremiseCentropogonsubgenusCentropogoncomprises 55 species found primarily in midelevation Andean forests featuring some of the most curved flowers among angiosperms. Floral curvature is linked to coevolution with the sicklebill hummingbird, which pollinates most species. Despite charismatic flowers, there is limited knowledge about the phylogenetic relationships and floral evolution. MethodsWe conducted the first densely sampled phylogenomic analysis of the clade using methods that account for incomplete lineage sorting on a sequence capture dataset generated with a lineage‐specific probe set. Using phylogenetic comparative methods, we test for correlated evolution of two traits central to sicklebill pollination. ResultsWe improve understanding of species relationships by more than doubling past taxon sampling. We confirm the monophyly of the subgenus and two sections, and the non‐monophyly of remaining sections. The subgenus is characterized by high gene tree discordance. Three widespread species display contrasting phylogenetic dynamics, withC. cornutusforming a clade andC. granulosusandC. solanifoliusforming non‐monophyletic, biogeographically clustered lineages. Correlated evolution of floral curvature and inflorescence structure has led to multiple putative losses of sicklebill pollination. ConclusionsCentropogonsubgenusCentropogonadds to a growing body of literature of Andean plant clades with high gene tree discordance. This phylogeny serves as a foundational framework for further macroevolutionary investigations into the environmental and biogeographic factors shaping the evolution of pollination‐related traits. 
    more » « less
  5. Abstract BackgroundThe leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker ofW. smithiias a ‘keystone predator’, very little is known about microbiota acquisition and assembly inW. smithiimosquitoes or the impacts ofW. smithii-microbiota interactions on mosquito and/or plant fitness. ResultsIn this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derivedW. smithiilarvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across theW. smithiilife cycle. Methods were also developed to produce axenic (microbiota-free)W. smithiilarvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity inW. smithiilarvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adultW. smithiimosquitoes. We also demonstrate the successful generation of axenicW. smithiilarvae and report variable fitness outcomes in gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field. ConclusionsThis study provides the first information on microbiota acquisition and assembly inW. smithiimosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand howW. smithii-microbiota interactions shape the structure and stability of this important model ecosystem. 
    more » « less