skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shortwave infrared luminescent Pt-nanowires: a mechanistic study of emission in solution and in the solid state
Several complexes of “PtL 2 ” composition containing two cyanoxime anions – 2-oximino-2-cyano- N -piperidineacetamide (PiPCO − ) and 2-oximino-2-cyano- N -morpholylacetamide (MCO − ) – have been obtained and characterized both in solution and in the solid state. Complexes exist as two distinct polymorphs: monomeric yellow complexes and dark-green [PtL 2 ] n 1D polymers, while for the MCO − anion a red, solvent containing dimeric [Pt(MCO) 2 ·DMSO] 2 complex has also been isolated. The interconversion of polymorphs was investigated. The monomeric PtL 2 units are arranged into anisotropic extended solid [PtL 2 ] n polymers with the help of Pt⋯Pt metallophilic interactions. Crystal structures of monomeric PtL 2 (L = PiPCO − , MCO − ) and red dimeric [Pt(MCO) 2 ·DMSO] 2 complexes were determined and revealed the cis -arrangement of cyanoxime anions. The Pt–Pt distance in the “head-to-tail” red dimer was found to be 3.133 Å. The structure of the polymeric [Pt(PiPCO) 2 ] n compound was elucidated using the EXAFS method and evidenced the formation of Pt-wires with ∼3.15 Å intermetallic separation. The EPR spectra of both 1D polymers at variable temperatures indicate the absence of Pt( iii ) species. Both pure dark-green [PtL 2 ] n polymers showed a considerable room temperature electrical conductivity of 20–30 S cm −1 , which evidences the formation of a mixed valence Pt( ii )/Pt( iv ) system. We discovered that these 1D polymeric [PtL 2 ] n complexes show an intense NIR fluorescence beyond 1000 nm, while yellow monomeric PtL 2 complexes are not emissive at all. The room temperature excitation spectra of 1D polymeric [PtL 2 ] n complexes demonstrated their strong emission beyond 1000 nm regardless of the used excitation wavelength between 350 and 800 nm, which is typical of systems with delocalized charge carriers. For the first time the formation of mixed valence “metal wires” held together by metallophilic interactions is directly linked both with an intense fluorescence in the NIR region of the spectrum and with the electrical conductivity. The effect of the concentration of [PtL 2 ] n complexes dispersed in the dielectric salt matrix on the photoluminescence wavelength and intensity was investigated. Both polymers show a quantum yield that is remarkably high for this region of the spectrum, reaching ∼2%. Variable temperature emission of polymeric [PtL 2 ] n in the −190–+60 °C range was studied as well.  more » « less
Award ID(s):
1355406
PAR ID:
10047323
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Dalton Trans.
Volume:
46
Issue:
39
ISSN:
1477-9226
Page Range / eLocation ID:
13562 to 13581
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Few anions exhibit electronically excited states, and, if they do, the one or two possible excitations typically transpire beyond the visible spectrum into the near-infrared. These few, red-shifted electronic absorption features make anions tantalizing candidates as carriers of the diffuse interstellar bands (DIBs), a series of mostly unknown, astronomically ubiquitous absorption features documented for over a century. The recent interstellar detection of benzonitrile implies that cyano-functionalized polycyclic aromatic hydrocarbon (PAH) anions may be present in space. The presently reported quantum chemical work explores the electronic properties of deprotonated benzene, naphthalene, and anthracene anions functionalized with a single cyano group. Both the absorption and emission properties of the electronically excited states are explored. The findings show that the larger anions absorption and emission energies possess both valence and dipole bound excitations in the 450–900 nm range with oscillator strengths for both types of >1×10−4. The valence and dipole bound excited state transitions will produce slightly altered substructure from one another making them appear to originate with different molecules. The known interstellar presence of related molecules, the two differing natures of the excited states for each, and the wavelength range of peaks for these cyano-functionalized PAH anions are coincident with DIB properties. Finally, the methods utilized appear to be able to predict the presence of dipole-bound excited states to within a 1.0 meV window relative to the electron binding energy. 
    more » « less
  2. Octa-acid (OA) and tetra- endo -methyl octa-acid (TEMOA) are deep cavity cavitands that readily form multimeric complexes with hydrophobic guests, like n -alkanes, in aqueous solution. Experimentally, OA displays a monotonic progression from monomeric to dimeric complexes with n -alkanes of increasing length, while TEMOA exhibits a non-monotonic progression from monomeric, to dimeric, to monomeric, to dimeric complexes over the same range of guest sizes. Previously we have conducted simulations demonstrating this curious behavior arises from the methyl units ringing TEMOA's portal to its hydrophobic pocket barring the possibility for two alkane chains to simultaneously bridge between two hosts in a dimer. Here we expand our prior simulation study to consider the partially methylated hosts mono- endo -methyl octa-acid, 1,3-di- endo -methyl octa-acid, and tri- endo -methyl octa-acid to examine the emergence of non-monotonic assembly behavior. Our simulations demonstrate a systematic progression of non-monotonic assembly with increasing portal methylation. This behavior is traced to the progressive destabilization of 2 : 2 complexes (two hosts assembled with two guests) rather than stabilizing other potential host/guest complexes that could be formed. 
    more » « less
  3. Dinuclear d 8 Pt( ii ) complexes, where two mononuclear square planar Pt( ii ) units are bridged in an “A-frame” geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal–metal–ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt( ii ) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(μ-8HQ)] 2 , where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered ( 3 LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ) 2 ] (3). The lengthened Pt–Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3 LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1–3 leads to an initially prepared excited state that relaxes within 15 ps to a 3 LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations. 
    more » « less
  4. To increase the number of potential materials for application as MRI contrast agents, several Cu(II) complexes were synthesized. Cu(II) complexes were chosen because they are less expensive in comparison with the presently used Gd(III), Mn(II) and other agents. Pyridine-2-carboximidamide (1), pyrimidine-2-carboximidamide (2) and pyrazole-2-carboximidamide (3) in the form of different salts along with CuCl2 and NaCl or CuBr2 and NaBr were used to obtain four Cu(II) complexes: dichloro-pyrimidine-2-carboximidamide copper(II) (4), dibromo-pyrimidine-2-carboximidamide copper(II) (5), dichloro-pirazole-2-carboximidamide copper(II) (6), and dibromo-pirazole-2-carboximidamide copper(II) (7). X-ray diffraction analysis revealed that molecular complexes 4–7 contain square planar coordinated Cu(II) atoms and their structures are very similar, as well as their packing in crystals, which allows us to consider them isomorphs. The same synthetic approach to complex preparation where NaCl or NaBr was not used brought us to the formation of dimeric complexes μ-chloro{chloro(pyridine-2-carboximidamide)copper(II)} (8) and μ-chloro{chloro(pyrimidine-2-carboximidamide)copper(II)} (9). In the dimeric complexes, two fragments which were the same as in monomeric complexes 4–7 are held together by bridging Cu-Cl bonds making the coordination of Cu equal to 5 (square pyramid). In dimeric complexes, axial Cu-Cl bonds are 2.7360 and 2.854 Å. These values are Cu-Cl bonds on the edge of existence according to statistical data from CSD. Synthesized complexes were characterized by IR spectroscopy, TGA, PXRD, EPR, and quantum chemical calculations. The higher thermal stability of monomer pyrimidine-based complexes with Cl and Br substituents makes them more prospective for further studies. 
    more » « less
  5. Abstract Platinum‐based halide perovskites exhibit promising optoelectronic properties along with merits of low‐temperature processing and stability. Current research on Pt halide perovskites is limited to 0D A2BX6structure as the ABX33D structure is thermodynamically unstable. Herein, the study reports the stabilization of the ABX3structure into a 2D layered phase, CsPtI3(DMSO), that is stable up to 181.5 °C. The 2D phase shows an excitonic peak at the absorption edge of 600 nm, indicating quantum confinement. It also exhibits a large Stokes shift due to intersystem crossing (ISC), with a quenched singlet excitonic fluorescence at 610 nm and strong triplet emission at 852 nm. Pt(II) co‐ordinates with dimethyl sulfoxide (DMSO) via σ‐donation of S lone‐pair electrons and π‐ back donation from Pt to S, stabilizing CsPtI3(DMSO) layered structure. The strong electronic interaction between DMSO and Pt(II) and orbital mixing lead to spin‐orbit‐coupling, facilitating ISC and singlet‐to‐triplet exciton energy transfer. The interaction of Pt and DMSO is further confirmed by addition of thioacetamide (TAA), a strong S‐donor, which retards the formation of 2D layered structure, and directly results in Cs2PtI6and Pt. 
    more » « less