A bstract The bulk-to-boundary dictionary for 4D celestial holography is given a new entry defining 2D boundary states living on oriented circles on the celestial sphere. The states are constructed using the 2D CFT state-operator correspondence from operator insertions corresponding to either incoming or outgoing particles which cross the celestial sphere inside the circle. The BPZ construction is applied to give an inner product on such states whose associated bulk adjoints are shown to involve a shadow transform. Scattering amplitudes are then given by BPZ inner products between states living on the same circle but with opposite orientations. 2D boundary states are found to encode the same information as their 4D bulk counterparts, but organized in a radically different manner.
more »
« less
Vector Field Map Representation for Near Conformal Surface Correspondence: Vector Field Map Representation for Near Conformal Surface Correspondence
- Award ID(s):
- 1655422
- PAR ID:
- 10047372
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer Graphics Forum
- Volume:
- 37
- Issue:
- 6
- ISSN:
- 0167-7055
- Page Range / eLocation ID:
- 72 to 83
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper presents a novel risk vector-based near miss prediction and obstacle avoidance method. The proposed method uses the sensor readings about the pose of the other obstacles to infer their motion model (velocity and heading) and, accordingly, adapt the risk assessment and take corrective actions if necessary. Relative vector calculations allow the method to perform in real-time. The algorithm has 1.68 times faster computation performance with less change of motion than other methods and it enables a robot to avoid 25 obstacles in a congested area. Fallback behaviors are also proposed in case of faulty sensors or situation changes. Simulation experiments with parameters inferred from experiments in the ocean with our custom-made robotic boat show the flexibility and adaptability of the proposed method to many obstacles present in the environment. Results highlight more efficient trajectories and comparable safety as other state-of-the-art methods, as well as robustness to failures.more » « less
-
A technique for the design of conformal metasurfaces with two spatially disconnected space wave ports connected by a surface wave is presented. The passive and lossless metasurface absorbs the incident wave at port 1, converts it nearly perfectly into a surface wave which transports the energy along an arbitrarily shaped/curved metasurface to port 2, then reradiates the captured power as a radiated field with control over its amplitude and phase. Since the incident field is seen to disappear at the input port and reappear at a spatially dislocated port as a new formed beam, the space wave can be said to have been seamlessly transported from one point in space to another. The metasurface consists of a single, conformal, spatially variant, impedance sheet supported by a conformal grounded dielectric substrate of the same shape. It is modeled using integral equations. The integral equations are solved using the method of moments (MoM). The impedances of the sheet are optimized using the adjoint variable method to achieve the near perfect wave transportation operation from a passive and lossless metasurface. MATLAB codes and COMSOL Multiphysics simulation files for all designs presented in this paper are available for download as supplemental material files. Possible applications include channel optimization for cellular networks, inexpensive power harvesting, sensing, around-the-corner radar, and cloaking.more » « less
An official website of the United States government
