skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: State-operator correspondence in celestial conformal field theory
A bstract The bulk-to-boundary dictionary for 4D celestial holography is given a new entry defining 2D boundary states living on oriented circles on the celestial sphere. The states are constructed using the 2D CFT state-operator correspondence from operator insertions corresponding to either incoming or outgoing particles which cross the celestial sphere inside the circle. The BPZ construction is applied to give an inner product on such states whose associated bulk adjoints are shown to involve a shadow transform. Scattering amplitudes are then given by BPZ inner products between states living on the same circle but with opposite orientations. 2D boundary states are found to encode the same information as their 4D bulk counterparts, but organized in a radically different manner.  more » « less
Award ID(s):
1707938
PAR ID:
10302330
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The infrared behavior of gravity in 4D asymptotically flat spacetime exhibits a rich set of symmetries. This has led to a proposed holographic duality between the gravitational $$ \mathcal{S} $$ S -matrix and a dual field theory living on the celestial sphere. Most of our current understanding of the dictionary relies on knowledge of the 4D bulk. As such, identifying intrinsic 2D models that capture the correct symmetries and soft dynamics of 4D gravity is an active area of interest. Here we propose that a 2D generalization of SYK provides an instructive toy model for the soft limit of the gravitational sector in 4D asymptotically flat spacetime. We find that the symmetries and soft dynamics of the 2D SYK model capture the salient features of the celestial theory: exhibiting chaotic dynamics, conformal invariance, and a w 1+ ∞ symmetry. The holographic map from 2D SYK operators to the 4D bulk employs the Penrose twistor transform. 
    more » « less
  2. A bstract Celestial holography proposes a duality between gravitational scattering in asymptotically flat space-time and a conformal field theory living on the celestial sphere. Its dictionary relates the infinite dimensional space-time symmetry group to Ward identities of the CFT. The spontaneous breaking of these asymptotic symmetries governs the dynamics of the soft sector in the CFT. Here we show that this sector encodes non-trivial backreaction effects that exhibit characteristics of maximal quantum chaos. A key element in the derivation is the identification of the Hilbert space of celestial CFT, defined through radial quantization, with that of a constantly accelerating Rindler observer. From the point of view of the bulk, Rindler particles exhibit Lyapunov behavior due to shockwave interactions that shift the observer horizon. From the point of view of the boundary, the superrotation Goldstone modes affect the relevant representations of the celestial Virasoro symmetry in a manner that induces Lyapunov behavior of out-of-time-ordered celestial correlators. 
    more » « less
  3. Goaoc, Xavier; Kerber, Michael (Ed.)
    A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately related to that of its exterior, which is the complement of an open regular neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact 3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies to links as well as knots, allows us to recover links with hundreds of crossings. We use it to find the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over 2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré conjecture. 
    more » « less
  4. null (Ed.)
    The operator product expansion (OPE) on the celestial sphere of conformal primary gluons and gravitons is studied. Asymptotic symmetries imply recursion relations between products of operators whose conformal weights differ by half-integers. It is shown, for tree-level Einstein-Yang-Mills theory, that these recursion relations are so constraining that they completely fix the leading celestial OPE coefficients in terms of the Euler beta function. The poles in the beta functions are associated with conformally soft currents. 
    more » « less
  5. We construct two-dimensional quantum states associated to four-dimensional linearized rotating self-dual black holes in (2, 2) signature Klein space. The states are comprised of global conformal primaries circulating on the celestial torus, the Kleinian analog of the celestial sphere. By introducing a generalized tower of Goldstone operators we identify the states as coherent exponentiations carrying an infinite tower of w1+∞charges or soft hair. We relate our results to recent approaches to black hole scattering, including a connection to Wilson lines,$$ \mathcal{S} $$ S -matrix results, and celestial holography in curved backgrounds. 
    more » « less