Abstract This work characterizes the structural, magnetic, and ferroelectric properties of epitaxial LuFeO3orthoferrite thin films with different Lu/Fe ratios. LuFeO3thin films are grown by pulsed laser deposition on SrTiO3substrates with Lu/Fe ratio ranging from 0.6 to 1.5. LuFeO3is antiferromagnetic with a weak canted moment perpendicular to the film plane. Piezoresponse force microscopy imaging and switching spectroscopy reveal room temperature ferroelectricity in Lu‐rich and Fe‐rich films, whereas the stoichiometric film shows little polarization. Ferroelectricity in Lu‐rich films is present for a range of deposition conditions and crystallographic orientations. Positive‐up‐negative‐down ferroelectric measurements on a Lu‐rich film yield ≈13 µC cm−2of switchable polarization, although the film also shows electrical leakage. The ferroelectric response is attributed to antisite defects analogous to that of Y‐rich YFeO3, yielding multiferroicity via defect engineering in a rare earth orthoferrite. 
                        more » 
                        « less   
                    
                            
                            Electronic Transport and Ferroelectric Switching in Ion‐Bombarded, Defect‐Engineered BiFeO 3 Thin Films
                        
                    
    
            Abstract Despite continued interest in the multiferroic BiFeO3for a diverse range of applications, use of this material is limited by its poor electrical leakage. This work demonstrates some of the most resistive BiFeO3thin films reported to date via defect engineering achieved via high‐energy ion bombardment. High leakage in as‐grown BiFeO3thin films is shown to be due to the presence of moderately shallow isolated trap states, which form during growth. Ion bombardment is shown to be an effective way to reduce this free carrier transport (by up to ≈4 orders of magnitude) by trapping the charge carriers in bombardment‐induced, deep‐lying defect complexes and clusters. The ion bombardment is also found to give rise to an increased resistance to switching as a result of an increase in defect concentration. This study demonstrates a systematic ion‐dose‐dependent increase in the coercivity, extension of the defect‐related creep regime, increase in the pinning activation energy, decrease in the switching speed, and broadening of the field distribution of switching. Ultimately, the use of such defect‐engineering routes to control materials will require identification of an optimum range of ion dosage to achieve maximum enhancement in resistivity with minimum impact on ferroelectric switching. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1708615
- PAR ID:
- 10047433
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Dielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems. Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies. We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films. Intrinsic point defects created by ion bombardment reduce leakage, delay low-field polarization saturation, enhance high-field polarizability, and improve breakdown strength. We demonstrate energy storage densities as high as ~133 joules per cubic centimeter with efficiencies exceeding 75%. Deterministic control of defects by means of postsynthesis processing methods such as ion bombardment can be used to overcome the trade-off between high polarizability and breakdown strength.more » « less
- 
            Abstract Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO 3 ) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO 3 films, to large (10’s of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching.more » « less
- 
            null (Ed.)Sm-doped BiFeO 3 (Bi 0.85 Sm 0.15 FeO 3 , or BSFO) thin films were fabricated on (001) SrTiO 3 (STO) substrates by pulsed laser deposition (PLD) over a range of deposition temperatures (600 °C, 640 °C and 670 °C). Detailed analysis of their microstructure via X-ray diffraction (XRD) and transmission electron microscopy (TEM) shows the deposition temperature dependence of ferroelectric (FE) and antiferroelectric (AFE) phase formation in BSFO. The Sm dopants are clearly detected by high-resolution scanning transmission electron microscopy (HR-STEM) and prove effective in controlling the ferroelectric properties of BSFO. The BSFO ( T dep = 670 °C) presents larger remnant polarization (Pr) than the other two BSFO ( T dep = 600 °C, 640 °C) and pure BiFeO 3 (BFO) thin films. This study paves a simple way for enhancing the ferroelectric properties of BSFO via deposition temperature and further promoting BFO practical applications.more » « less
- 
            Abstract Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3thin films have typically been deposited at relatively high temperatures (650–800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3(001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
