skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells
Award ID(s):
1652992
PAR ID:
10047514
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Tissue Engineering Part C: Methods
Volume:
23
Issue:
10
ISSN:
1937-3384
Page Range / eLocation ID:
627 to 640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The study delves into the kinetics of non-isothermal crystallization of Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire crystallization information and investigate the kinetics behavior of the two types of nanofibers under different cooling rates ranging from 0.5–5 K/min. The results show that the crystallization rate decreases at higher crystallization temperatures. Furthermore, the parameters of non-isothermal crystallization kinetics were investigated via several mathematical models, including Jeziorny and Mo’s models. Mo’s approach was suitable to describe the nanofibers’ overall non-isothermal crystallization process. In addition, the Kissinger and Friedman methods were used to calculate the activation energy of bulk-PCL, PCL, and MgO-PCL nanofibers. The result showed that the activation energy of bulk-PCL was comparatively lower than that of nanofibers. The investigation of the kinetics of crystallization plays a crucial role in optimizing manufacturing processes and enhancing the overall performance of nanofibers. 
    more » « less
  2. Abstract Orbital implants are necessary for reconstructing fractured orbital walls and are traditionally fabricated using titanium or polyethylene, but these materials result in medical complications such as increased risk of implant migration and hemorrhaging. Therefore, orbital implants constructed from biocompatible and biodegradable polymers have been recently researched to mitigate these risks. Material extrusion three-dimensional (3D) printing techniques, especially fused deposition modeling (FDM), can be applied to produce patient-specific orbital implants. However, current structures fabricated by FDM usually possess poor mechanical properties and high surface roughness. In this work, an embedded FDM method is designed and implemented to fabricate polycaprolactone (PCL) orbital implants with increased mechanical properties and surface morphology through the development and utilization of a temperature-stable yield-stress suspension comprised of fumed silica particles and a sunflower oil solvent. The rheological properties of the suspension were measured and tuned to produce a viable support bath material above the melting temperature of PCL. Filaments, single-layer sheets, and tensile test samples were printed to optimize the printing parameters, verify the surface morphology, and validate the mechanical properties, respectively. After that, a numerical simulation was performed to determine the mechanical robustness of the designed orbital implant model. Finally, the orbital implant was printed, measured, and implanted into a mock-up orbital socket to verify the viability of the proposed embedded FDM method. 
    more » « less
  3. Three-dimensional (3D) printing was utilized for the fabrication of a composite scaffold of poly(ε-caprolactone) (PCL) and calcium magnesium phosphate (CMP) bioceramics for bone tissue engineering application. Four groups of scaffolds, that is, PMC-0, PMC-5, PMC-10, and PMC-15, were fabricated using a custom 3D printer. Rheology analysis, surface morphology, and wettability of the scaffolds were characterized. The PMC-0 scaffolds displayed a smoother surface texture and an increase in the ceramic content of the composite scaffolds exhibited a rougher structure. The hydrophilicity of the composite scaffold was significantly enhanced compared to the control PMC-0. The effect of ceramic content on the bioactivity of fibroblast NIH/3T3 cells in the composite scaffold was investigated. Cell viability and toxicity studies were evaluated by comparing results from lactate dehydrogenase (LDH) and Alamar Blue (AB) colorimetric assays, respectively. The live-dead cell assay illustrated the biocompatibility of the tested samples with more than 100% of live cells on day 3 compared to the control one. The LDH release indicated that the composite scaffolds improved cell attachment and proliferation. In this research, the fabrication of a customized composite 3D scaffold not only mimics the rough textured architecture, porosity, and chemical composition of natural bone tissue matrices but also serves as a source for soluble ions of calcium and magnesium that are favorable for bone cells to grow. These 3D-printed scaffolds thus provide a desirable microenvironment to facilitate biomineralization and could be a new effective approach for preparing constructs suitable for bone tissue engineering. 
    more » « less
  4. null (Ed.)