skip to main content

Title: Modular function of long noncoding RNA, COLDAIR, in the vernalization response
The long noncoding RNA COLDAIR is necessary for the repression of a floral repressor FLOWERING LOCUS C (FLC) during vernalization in Arabidopsis thaliana. The repression of FLC is mediated by increased enrichment of Polycomb Repressive Complex 2 (PRC2) and subsequent trimethylation of Histone H3 Lysine 27 (H3K27me3) at FLC chromatin. In this study we found that the association of COLDAIR with chromatin occurs only at the FLC locus and that the central region of the COLDAIR transcript is critical for this interaction. A modular motif in COLDAIR is responsible for the association with PRC2 in vitro, and the mutations within the motif that reduced the association of COLDAIR with PRC2 resulted in vernalization insensitivity. The vernalization insensitivity caused by mutant COLDAIR was rescued by the ectopic expression of the wild-type COLDAIR. Our study reveals the molecular framework in which COLDAIR lncRNA mediates the PRC2-mediated repression of FLC during vernalization.
Authors:
; ;
Award ID(s):
1656764
Publication Date:
NSF-PAR ID:
10047516
Journal Name:
PLOS genetics
Volume:
13
Issue:
7
Page Range or eLocation-ID:
e1006939
ISSN:
1553-7404
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polycomb group (PcG) proteins are widely utilized for transcriptional repression in eukaryotes. Here, we characterize, in the protist Tetrahymena thermophila, the EZL1 (E(z)-like 1) complex, with components conserved in metazoan Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The EZL1 complex is required for histone H3 K27 and K9 methylation, heterochromatin formation, transposable element control, and programmed genome rearrangement. The EZL1 complex interacts with EMA1, a helicase required for RNA interference (RNAi). This interaction is implicated in co-transcriptional recruitment of the EZL1 complex. Binding of H3K27 and H3K9 methylation by PDD1—another PcG protein interacting with the EZL1 complex—reinforcesmore »its chromatin association. The EZL1 complex is an integral part of Polycomb bodies, which exhibit dynamic distribution in Tetrahymena development: Their dispersion is driven by chromatin association, while their coalescence by PDD1, likely via phase separation. Our results provide a molecular mechanism connecting RNAi and Polycomb repression, which coordinately regulate nuclear bodies and reorganize the genome.« less
  2. Chromatin structure is critical for gene expression and many other cellular processes. In Arabidopsis thaliana , the floral repressor FLC adopts a self-loop chromatin structure via bridging of its flanking regions. This local gene loop is necessary for active FLC expression. However, the molecular mechanism underlying the formation of this class of gene loops is unknown. Here, we report the characterization of a group of linker histone-like proteins, named the GH1-HMGA family in Arabidopsis , which act as chromatin architecture modulators. We demonstrate that these family members redundantly promote the floral transition through the repression of FLC . A genome-widemore »study revealed that this family preferentially binds to the 5′ and 3′ ends of gene bodies. The loss of this binding increases FLC expression by stabilizing the FLC 5′ to 3′ gene looping. Our study provides mechanistic insights into how a family of evolutionarily conserved proteins regulates the formation of local gene loops.« less
  3. Polycomb Group (PcG) proteins are part of an epigenetic cell memory system that plays essential roles in multicellular development, stem cell biology, X chromosome inactivation, and cancer. In animals, plants, and many fungi, Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to assemble transcriptionally repressed facultative heterochromatin. PRC2 is structurally and functionally conserved in the model fungusNeurospora crassa, and recent work in this organism has generated insights into PRC2 control and function. To identify components of the facultative heterochromatin pathway, we performed a targeted screen ofNeurosporadeletion strains lacking individual ATP-dependent chromatin remodeling enzymes. We foundmore »theNeurosporahomolog of IMITATION SWITCH (ISW) is critical for normal transcriptional repression, nucleosome organization, and establishment of typical histone methylation patterns in facultative heterochromatin domains. We also found that stable interaction between PRC2 and chromatin depends on ISW. A functional ISW ATPase domain is required for gene repression and normal H3K27 methylation. ISW homologs interact with accessory proteins to form multiple complexes with distinct functions. Using proteomics and molecular approaches, we identified three distinctNeurosporaISW-containing complexes. A triple mutant lacking three ISW accessory factors and disrupting multiple ISW complexes led to widespread up-regulation of PRC2 target genes and altered H3K27 methylation patterns, similar to an ISW-deficient strain. Taken together, our data show that ISW is a key component of the facultative heterochromatin pathway inNeurospora, and that distinct ISW complexes perform an apparently overlapping role to regulate chromatin structure and gene repression at PRC2 target domains.

    « less
  4. Abstract Two common hemoglobinopathies, sickle cell disease (SCD) and β-thalassemia, arise from genetic mutations within the β-globin gene. In this work, we identified a 500-bp motif (Fetal Chromatin Domain, FCD) upstream of human ϒ-globin locus and showed that the removal of this motif using CRISPR technology reactivates the expression of ϒ-globin. Next, we present two different cell morphology-based machine learning approaches that can be used identify human blood cells (KU-812) that harbor CRISPR-mediated FCD genetic modifications. Three candidate models from the first approach, which uses multilayer perceptron algorithm (MLP 20-26, MLP26-18, and MLP 30-26) and flow cytometry-derived cellular data, yieldedmore »0.83 precision, 0.80 recall, 0.82 accuracy, and 0.90 area under the ROC (receiver operating characteristic) curve when predicting the edited cells. In comparison, the candidate model from the second approach, which uses deep learning (T2D5) and DIC microscopy-derived imaging data, performed with less accuracy (0.80) and ROC AUC (0.87). We envision that equivalent machine learning-based models can complement currently available genotyping protocols for specific genetic modifications which result in morphological changes in human cells.« less
  5. Abstract The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers dependingmore »on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.« less