skip to main content


Title: Fear and Logging in the Internet of Things
As the Internet of Things (IoT) continues to proliferate, diagnosing incorrect behavior within increasingly-automated homes becomes considerably more difficult. Devices and apps may be chained together in long sequences of trigger-action rules to the point that from an observable symptom (e.g., an unlocked door) it may be impossible to identify the distantly removed root cause (e.g., a malicious app). This is because, at present, IoT audit logs are siloed on individual devices, and hence cannot be used to reconstruct the causal relationships of complex workflows. In this work, we present ProvThings, a platform-centric approach to centralized auditing in the Internet of Things. ProvThings performs efficient automated instrumentation of IoT apps and device APIs in order to generate data provenance that provides a holistic explanation of system activities, including malicious behaviors. We prototype ProvThings for the Samsung SmartThings platform, and benchmark the efficacy of our approach against a corpus of 26 IoT attacks. Through the introduction of a selective code instrumentation optimization, we demonstrate in evaluation that ProvThings imposes just 5% overhead on physical IoT devices while enabling real time querying of system behaviors, and further consider how ProvThings can be leveraged to meet the needs of a variety of stakeholders in the IoT ecosystem.  more » « less
Award ID(s):
1657534 1750024
NSF-PAR ID:
10047686
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Network and Distributed Systems Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet of Things (IoT) deployments are becoming increasingly automated and vastly more complex. Facilitated by programming abstractions such as trigger-action rules, end-users can now easily create new functionalities by interconnecting their devices and other online services. However, when multiple rules are simultaneously enabled, complex system behaviors arise that are difficult to understand or diagnose. While history tells us that such conditions are ripe for exploitation, at present the security states of trigger-action IoT deployments are largely unknown. In this work, we conduct a comprehensive analysis of the interactions between trigger-action rules in order to identify their security risks. Using IFTTT as an exemplar platform, we first enumerate the space of inter-rule vulnerabilities that exist within trigger-action platforms. To aid users in the identification of these dangers, we go on to present iRuler, a system that performs Satisfiability Modulo Theories (SMT) solving and model checking to discover inter-rule vulnerabilities within IoT deployments. iRuler operates over an abstracted information flow model that represents the attack surface of an IoT deployment, but we discover in practice that such models are difficult to obtain given the closed nature of IoT platforms. To address this, we develop methods that assist in inferring trigger-action information flows based on Natural Language Processing. We develop a novel evaluative methodology for approximating plausible real-world IoT deployments based on the installation counts of 315,393 IFTTT applets, determining that 66% of the synthetic deployments in the IFTTT ecosystem exhibit the potential for inter-rule vulnerabilities. Combined, these efforts provide the insight into the real-world dangers of IoT deployment misconfigurations. 
    more » « less
  2. The recent paradigm shift introduced by the Internet of Things (IoT) has brought embedded systems into focus as a target for both security analysts and malicious adversaries. Typified by their lack of standardized hardware, diverse software, and opaque functionality, IoT devices present unique challenges to security analysts due to the tight coupling between their firmware and the hardware for which it was designed. In order to take advantage of modern program analysis techniques, such as fuzzing or symbolic execution, with any kind of scale or depth, analysts must have the ability to execute firmware code in emulated (or virtualized) environments. However, these emulation environments are rarely available and cumbersome to create through manual reverse engineering, greatly limiting the analysis of binary firmware. In this work, we explore the problem of firmware re-hosting, the process by which firmware is migrated from its original hardware environment into a virtualized one. We show that an approach capable of creating virtual, interactive environments in an automated manner is a necessity to enable firmware analysis at scale. We present the first proof-of-concept system aiming to achieve this goal, called PRETENDER, which uses observations of the interactions between the original hardware and the firmware to automatically create models of peripherals, and allows for the execution of the firmware in a fully-emulated environment. Unlike previous approaches, these models are interactive, stateful, and transferable, meaning they are designed to allow the program to receive and process new input, a requirement of many analyses. We demonstrate our approach on multiple hardware platforms and firmware samples, and show that the models are flexible enough to allow for virtualized code execution, the exploration of new code paths, and the identification of security vulnerabilities. 
    more » « less
  3. Billions of devices in the Internet of Things (IoT) are inter-connected over the internet and communicate with each other or end users. IoT devices communicate through messaging bots. These bots are important in IoT systems to automate and better manage the work flows. IoT devices are usually spread across many applications and are able to capture or generate substantial influx of big data. The integration of IoT with cloud computing to handle and manage big data, requires considerable security measures in order to prevent cyber attackers from adversarial use of such large amount of data. An attacker can simply utilize the messaging bots to perform malicious activities on a number of devices and thus bots pose serious cybersecurity hazards for IoT devices. Hence, it is important to detect the presence of malicious bots in the network. In this paper we propose an evidence theory-based approach for malicious bot detection. Evidence Theory, a.k.a. Dempster Shafer Theory (DST) is a probabilistic reasoning tool and has the unique ability to handle uncertainty, i.e. in the absence of evidence. It can be applied efficiently to identify a bot, especially when the bots have dynamic or polymorphic behavior. The key characteristic of DST is that the detection system may not need any prior information about the malicious signatures and profiles. In this work, we propose to analyze the network flow characteristics to extract key evidence for bot traces. We then quantify these pieces of evidence using apriori algorithm and apply DST to detect the presence of the bots. 
    more » « less
  4. Despite the phenomenal advances in the computational power and functionality of electronic systems, human-machine interaction has largely been limited to simple control panels, keyboard, mouse and display. Consequently, these systems either rely critically on close human guidance or operate almost independently from the user. An exemplar technology integrated tightly into our lives is the smartphone. However, the term “smart” is a misnomer, since it has fundamentally no intelligence to understand its user. The users still have to type, touch or speak (to some extent) to express their intentions in a form accessible to the phone. Hence, intelligent decision making is still almost entirely a human task. A life-changing experience can be achieved by transforming machines from passive tools to agents capable of understanding human physiology and what their user wants [1]. This can advance human capabilities in unimagined ways by building a symbiotic relationship to solve real world problems cooperatively. One of the high-impact application areas of this approach is assistive internet of things (IoT) technologies for physically challenged individuals. The Annual World Report on Disability reveals that 15% of the world population lives with disability, while 110 to 190 million of these people have difficulty in functioning [1]. Quality of life for this population can improve significantly if we can provide accessibility to smart devices, which provide sensory inputs and assist with everyday tasks. This work demonstrates that smart IoT devices open up the possibility to alleviate the burden on the user by equipping everyday objects, such as a wheelchair, with decision-making capabilities. Moving part of the intelligent decision making to smart IoT objects requires a robust mechanism for human-machine communication (HMC). To address this challenge, we present examples of multimodal HMC mechanisms, where the modalities are electroencephalogram (EEG), speech commands, and motion sensing. We also introduce an IoT co-simulation framework developed using a network simulator (OMNeT++) and a robot simulation platform Virtual Robot Experimentation Platform (V-REP). We show how this framework is used to evaluate the effectiveness of different HMC strategies using automated indoor navigation as a driver application. 
    more » « less
  5. null (Ed.)
    In this paper, we propose a framework called Contego-TEE to secure Internet-of-Things (IoT) edge devices with timing requirements from control spoofing attacks where an adversary sends malicious control signals to the actuators. We use a trusted computing base available in commodity processors (such as ARM TrustZone) and propose an invariant checking mechanism to ensure the security and safety of the physical system. A working prototype of Contego-TEE was developed using embedded Linux kernel. We demonstrate the feasibility of our approach for a robotic vehicle running on an ARM-based platform. 
    more » « less