skip to main content


This content will become publicly available on May 22, 2024

Title: Protected or Porous: A Comparative Analysis of Threat Detection Capability of IoT Safeguards
Consumer Internet of Things (IoT) devices are increasingly common, from smart speakers to security cameras, in homes. Along with their benefits come potential privacy and security threats. To limit these threats a number of commercial services have become available (IoT safeguards). The safeguards claim to provide protection against IoT privacy risks and security threats. However, the effectiveness and the associated privacy risks of these safeguards remains a key open question. In this paper, we investigate the threat detection capabilities of IoT safeguards for the first time. We develop and release an approach for automated safeguards experimentation to reveal their response to common security threats and privacy risks. We perform thousands of automated experiments using popular commercial IoT safeguards when deployed in a large IoT testbed. Our results indicate not only that these devices may be ineffective in preventing risks, but also their cloud interactions and data collection operations may introduce privacy risks for the households that adopt them.  more » « less
Award ID(s):
1955227
NSF-PAR ID:
10428351
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2023 IEEE Symposium on Security and Privacy (SP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploration of Internet of Things (IoT) security often focuses on threats posed by external and technically-skilled attackers. While it is important to understand these most extreme cases, it is equally important to understand the most likely risks of harm posed by smart device ownership. In this paper, we explore how smart devices are misused – used without permission in a manner that causes harm – by device owners’ everyday associates such as friends, family, and romantic partners. In a preliminary characterization survey (n = 100), we broadly capture the kinds of unauthorized use and misuse incidents participants have experienced or engaged in. Then, in a prevalence survey (n = 483), we assess the prevalence of these incidents in a demographically-representative population. Our findings show that unauthorized use of smart devices is widespread (experienced by 43% of participants), and that misuse is also common (experienced by at least 19% of participants). However, highly individual factors determine whether these unauthorized use events constitute misuse. Through a focus on everyday abuses rather than severe-but-unlikely attacks, this work sheds light on the most prevalent security and privacy threats faced by smart homeowners today. 
    more » « less
  2. The pervasive nature of smart connected devices has intruded on our daily lives and has become an intrinsic part of our world. However, the wide use of the Internet of Things (IoT) in critical application domains has raised concerns for user privacy and security against growing cyber threats. In particular, the implications of cyber exploitation for IoT devices are beyond financial losses and could constitute risks to human life. Most deployed access control solutions for smart IoT systems do not offer policy individualization, the ability to specify or change the policy according to the individual user’s preference. As a result, currently deployed systems are not well suited to specify access control policies in a multi-user environment, where users access the same devices to perform different operations. The system’s security gets tricky when the smart ecosystem involves complicated social relationships, much like in a smart home. Relationship-based access control (ReBAC), widely used in online social networks, offers the ability to consider user relationships in defining access control decisions and supports policy individualization. However, to the best of our knowledge, no such attempt has been made to develop a formal ReBAC model for smart IoT systems. This paper proposes a ReBAC IoT dynamic and fine-grained access control model which considers the social relationships among users along with the attributes to support an attributes-aware relationship-based access control model for smart IoT systems. ReBAC IoT is formally defined, illustrated through different use cases, implemented, and tested. 
    more » « less
  3. The pervasive nature of smart connected devices has intruded on our daily lives and has become an intrinsic part of our world. However, the wide use of the Internet of Things (IoT) in critical application domains has raised concerns for user privacy and security against growing cyber threats. In particular, the implications of cyber exploitation for IoT devices are beyond financial losses and could constitute risks to human life. Most deployed access control solutions for smart IoT systems do not offer policy individualization, the ability to specify or change the policy according to the individual user’s preference. As a result, currently deployed systems are not well suited to specify access control policies in a multi-user environment, where users access the same devices to perform different operations. The system’s security gets tricky when the smart ecosystem involves complicated social relationships, much like in a smart home. Relationship-based access control (ReBAC), widely used in online social networks, offers the ability to consider user relationships in defining access control decisions and supports policy individualization. However, to the best of our knowledge, no such attempt has been made to develop a formal ReBAC model for smart IoT systems. This paper proposes a ReBAC IoT dynamic and fine-grained access control model which considers the social relationships among users along with the attributes to support an attributes-aware relationship-based access control model for smart IoT systems. ReBAC IoT is formally defined, illustrated through different use cases, implemented, and tested. 
    more » « less
  4. null (Ed.)
    Third-party security analytics allow companies to outsource threat monitoring tasks to teams of experts and avoid the costs of in-house security operations centers. By analyzing telemetry data from many clients these services are able to offer enhanced insights, identifying global trends and spotting threats before they reach most customers. Unfortunately, the aggregation that drives these insights simultaneously risks exposing sensitive client data if it is not properly sanitized and tracked. In this work, we present SCIFFS, an automated information flow monitoring framework for preventing sensitive data exposure in third-party security analytics platforms. SCIFFS performs decentralized information flow control over customer data it in a serverless setting, leveraging the innate polyinstantiated nature of serverless functions to assure precise and lightweight tracking of data flows. Evaluating SCIFFS against a proof-of-concept security analytics framework on the widely-used OpenFaaS platform, we demonstrate that our solution supports common analyst workflows data ingestion, custom dashboards, threat hunting) while imposing just 3.87% runtime overhead on event ingestion and the overhead on aggregation queries grows linearly with the number of records in the database (e.g., 18.75% for 50,000 records and 104.27% for 500,000 records) as compared to an insecure baseline. Thus, SCIFFS not only establishes a privacy-respecting model for third-party security analytics, but also highlights the opportunities for security-sensitive applications in the serverless computing model. 
    more » « less
  5. The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring. 
    more » « less