skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protected or Porous: A Comparative Analysis of Threat Detection Capability of IoT Safeguards
Consumer Internet of Things (IoT) devices are increasingly common, from smart speakers to security cameras, in homes. Along with their benefits come potential privacy and security threats. To limit these threats a number of commercial services have become available (IoT safeguards). The safeguards claim to provide protection against IoT privacy risks and security threats. However, the effectiveness and the associated privacy risks of these safeguards remains a key open question. In this paper, we investigate the threat detection capabilities of IoT safeguards for the first time. We develop and release an approach for automated safeguards experimentation to reveal their response to common security threats and privacy risks. We perform thousands of automated experiments using popular commercial IoT safeguards when deployed in a large IoT testbed. Our results indicate not only that these devices may be ineffective in preventing risks, but also their cloud interactions and data collection operations may introduce privacy risks for the households that adopt them.  more » « less
Award ID(s):
1955227
PAR ID:
10428351
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2023 IEEE Symposium on Security and Privacy (SP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploration of Internet of Things (IoT) security often focuses on threats posed by external and technically-skilled attackers. While it is important to understand these most extreme cases, it is equally important to understand the most likely risks of harm posed by smart device ownership. In this paper, we explore how smart devices are misused – used without permission in a manner that causes harm – by device owners’ everyday associates such as friends, family, and romantic partners. In a preliminary characterization survey (n = 100), we broadly capture the kinds of unauthorized use and misuse incidents participants have experienced or engaged in. Then, in a prevalence survey (n = 483), we assess the prevalence of these incidents in a demographically-representative population. Our findings show that unauthorized use of smart devices is widespread (experienced by 43% of participants), and that misuse is also common (experienced by at least 19% of participants). However, highly individual factors determine whether these unauthorized use events constitute misuse. Through a focus on everyday abuses rather than severe-but-unlikely attacks, this work sheds light on the most prevalent security and privacy threats faced by smart homeowners today. 
    more » « less
  2. The rapid expansion of location-based services gives rise to significant security and privacy apprehensions. While these services deliver convenience, they accentuate concerns regarding widespread location tracking via web services, mobile apps, IoT devices, and autonomous vehicles. In this study, we comprehensively assess the merits and constraints of prevalent techniques in location privacy protection, including spatial-temporal cloaking, k-anonymity, differential privacy, and encryption. Furthermore, we delve into emerging applications like intelligent traffic planning and virus contact tracing which introduce novel complexities to the pursuit of robust location privacy safeguards. 
    more » « less
  3. With an increasing number of Internet of Things (IoT) devices present in homes, there is a rise in the number of potential infor- mation leakage channels and their associated security threats and privacy risks. Despite a long history of attacks on IoT devices in unprotected home networks, the problem of accurate, rapid detection and prevention of such attacks remains open. Many existing IoT protection solutions are cloud-based, sometimes ineffective, and might share consumer data with unknown third parties. This paper investigates the potential for effective IoT threat detection locally, on a home router, using AI tools combined with classic rule-based traffic-filtering algorithms. Our results show that with a slight rise of router hardware resources caused by machine learn- ing and traffic filtering logic, a typical home router instrumented with our solution is able to effectively detect risks and protect a typical home IoT network, equaling or outperforming existing popular solutions, with- out any effects on benign IoT functionality, and without relying on cloud services and third parties. 
    more » « less
  4. null (Ed.)
    Internet of Things (IoT) devices are becoming increasingly popular and offer a wide range of services and functionality to their users. However, there are significant privacy and security risks associated with these devices. IoT devices can infringe users' privacy by ex-filtrating their private information to third parties, often without their knowledge. In this work we investigate the possibility to identify IoT devices and their location in an Internet Service Provider's network. By analyzing data from a large Internet Service Provider (ISP), we show that it is possible to recognize specific IoT devices, their vendors, and sometimes even their specific model, and to infer their location in the network. This is possible even with sparsely sampled flow data that are often the only datasets readily available at an ISP. We evaluate our proposed methodology to infer IoT devices at subscriber lines of a large ISP. Given ground truth information on IoT devices location and models, we were able to detect more than 77% of the studied IoT devices from sampled flow data in the wild. 
    more » « less
  5. Abstract This article provides an overview of intimate threats: a class of privacy threats that can arise within our families, romantic partnerships, close friendships, and caregiving relationships. Many common assumptions about privacy are upended in the context of these relationships, and many otherwise effective protective measures fail when applied to intimate threats. Those closest to us know the answers to our secret questions, have access to our devices, and can exercise coercive power over us. We survey a range of intimate relationships and describe their common features. Based on these features, we explore implications for both technical privacy design and policy, and offer design recommendations for ameliorating intimate privacy risks. 
    more » « less