Resource flexing is the notion of allocating resources on-demand as workload changes. This is a key advantage of Virtualized Network Functions (VNFs) over their non-virtualized counterparts. However, it is difficult to balance the timeliness and resource efficiency when making resource flexing decisions due to unpredictable workloads and complex VNF processing logic. In this work, we propose an Elastic resource flexing system for Network functions VIrtualization (ENVI) that leverages a combination of VNF-level features and infrastructure-level features to construct a neural-network-based scaling decision engine for generating timely scaling decisions. To adapt to dynamic workloads, we design a window-based rewinding mechanism tomore »
HYPER: A Hybrid High-Performance Framework for Network Function Virtualization
Network function virtualization (NFV) offers the potential for both enhancing service delivery flexibility and reducing overall costs by virtualizing network functions that are traditionally implemented in dedicated hardware. However, the flexibility of NFV comes with considerable compromises since virtual machine carried functions could introduce significant performance overhead. In this paper, we present a novel high-performance framework called HYPER, which combines programmable hardware infrastructure and traditional software infrastructure in NFV to achieve both high performance and flexibility for supporting virtualized network functions (VNFs). In HYPER, we design a mediator layer to hide underlying infrastructure heterogeneity from the NFV orchestrator to simplify VNF management. In addition, we design a SLA-aware service chaining algorithm in HYPER to leverage the benefits of the hybrid infrastructure to fulfill both functional and performance requirements from service subscribers (or tenants). To optimize resource utilization efficiency, we also introduce a performance-aware VNF placement algorithm in HYPER, which accommodates both resource and performance requirements in placing VNFs. We implement HYPER in a testbed based on OpenStack and ONetCard. Experimental results show that HYPER reduces the forwarding latency of a service chain by 40% to 67% compared with data plane development kit -based implementation, while maintaining the flexibility of VNF more »
- Award ID(s):
- 1642143
- Publication Date:
- NSF-PAR ID:
- 10047715
- Journal Name:
- IEEE Journal on Selected Areas in Communications
- Volume:
- 35
- Issue:
- 11
- Page Range or eLocation-ID:
- 2490 - 2500
- ISSN:
- 0733-8716
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network function virtualization (NFV) technologyattracts tremendous interests from telecommunication industryand data center operators, as it allows service providers to assignresource for Virtual Network Functions (VNFs) on demand,achieving better flexibility, programmability, and scalability. Toimprove server utilization, one popular practice is to deploy besteffort (BE) workloads along with high priority (HP) VNFs whenhigh priority VNF’s resource usage is detected to be low. The keychallenge of this deployment scheme is to dynamically balancethe Service level objective (SLO) and the total cost of ownership(TCO) to optimize the data center efficiency under inherentlyfluctuating workloads. With the recent advancement in deepreinforcement learning, we conjecture that itmore »
-
Going beyond the one-type-fits-all design philosophy, the future 5G radio access network (RAN) with network slicing methodology is employed to support widely diverse applications over the same physical network. RAN slicing aims to logically split an infrastructure into a set of self-contained programmable RAN slices in which each slice built on top of the underlying physical RAN (substrate) is a separate logical mobile network and delivers a set of services with similar characteristics. Each RAN slice is constituted by various virtual network functions (VNFs) distributed geographically in numerous substrate nodes. A RAN configuration scheme for the network is imperative tomore »
-
Real-time event detection and targeted decision making for emerging mission-critical applications require systems that extract and process relevant data from IoT sources in smart spaces. Oftentimes, this data is heterogeneous in size, relevance, and urgency, which creates a challenge when considering that different groups of stakeholders (e.g., first responders, medical staff, government officials, etc.) require such data to be delivered in a reliable and timely manner. Furthermore, in mission-critical settings, networks can become constrained due to lossy channels and failed components, which ultimately add to the complexity of the problem. In this article, we propose PrioDeX, a cross-layer middleware systemmore »
-
Cloud virtualization and multi-tenant networking provide Infrastructure as a Service (IaaS) providers a new and innovative way to offer on-demand services to their customers, such as easy provisioning of new applications and better resource efficiency and scalability. However, existing data-intensive intelligent applications require more powerful processors, higher bandwidth and lower-latency networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of software virtualization, we propose a new data center network design based on OpenStack. Specifically, we map the OpenStack networking services to the hardware switch and utilize hardware-accelerated L2 switch andmore »