skip to main content


Title: Strontium isotopes are consistent with low-elevation foraging limits for Henst's goshawk: 87 Sr/ 86 Sr Supports Elevation Limits For Goshawks
NSF-PAR ID:
10047943
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wildlife Society Bulletin
ISSN:
1938-5463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chirality and polarity are the two most important and representative symmetry‐dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror‐related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest‐level challenge. Herein, a new symmetry‐breaking strategy that employs heteroanionic groups to construct hourglass‐like [Sr3OGeS3]2+and [Sr3SGeS3]2+groups to design and synthesize a new oxychalcogenide Sr18Ge9O5S31with chiral‐polar duality is proposed. The presence of two enantiomers of Sr18Ge9O5S31is confirmed by the single‐crystal X‐ray diffraction. Its optical activity and ferroelectricity are also studied by solid‐state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18Ge9O5S31possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid‐infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry‐breaking and are able to provide some inspiration for exploring the chiral‐polar duality materials.

     
    more » « less
  2. Abstract

    The Earth's upper mantle is isotopically heterogeneous over large lengthscales, but the lower limit of these heterogeneities is not well quantified. Grain scale trace elemental variability has been observed in mantle peridotites, which suggests that isotopic heterogeneity may be preserved as well. Recent advances in isotope ratio mass spectrometry enable isotopic analysis of very small samples (e.g., nanograms or less of analyte) while maintaining the precision necessary for meaningful interpretation. Here we examine four peridotite xenoliths—hosted in lavas from Savai'i (Samoa hotspot) and Tahiti (Societies hotspot) islands—that exhibit grain scale trace element heterogeneity likely related to trapped fluid and/or melt inclusions. To evaluate whether this heterogeneity is also reflected in grain scale isotopic heterogeneity, we separated clinopyroxene, orthopyroxene, and (in the most geochemically enriched xenolith) olivine for single‐grain87Sr/86Sr and143Nd/144Nd analyses. We find, in some xenoliths, extreme intra‐xenolith isotopic heterogeneity. For example, in one xenolith, different mineral grains range in87Sr/86Sr from 0.70987 to 0.71321, with corresponding variability in143Nd/144Nd from 0.512331 to 0.512462. However, not all peridotite xenoliths which display trace elemental heterogeneity exhibit isotopic heterogeneity. Based on coupled isotopic and trace element data (i.e., a negatively‐sloping trend in87Sr/86Sr vs. Ti/Eu), we suggest that carbonatitic metasomatism is responsible for creating the intra‐xenolith isotopic heterogeneities which we observe. This carbonatitic component falls off the array defined in87Sr/86Sr‐143Nd/144Nd space by Samoa hotspot basalts, which suggests a second, distinct EM2 (enriched mantle II) component is present in the Samoa hotspot that is not readily recognized in erupted products, but is instead seen only in mantle peridotite xenoliths.

     
    more » « less
  3. Abstract

    Melt inclusions with large, positive Sr anomalies have been described in multiple tectonic settings, and the origins of this unusual geochemical feature are debated. Three origins have been proposed, all involving plagioclase as the source of the elevated Sr: (i) direct assimilation of plagioclase‐rich lithologies, (ii) recycled lower oceanic gabbro in the mantle source, and (iii) shallow‐level diffusive interaction between present day lower oceanic crust (i.e., plagioclase‐bearing lithologies) and the percolating melt. A “ghost plagioclase” signature (i.e., a large, positive Sr anomaly without associated high Al2O3) is present in melt inclusions from Mauna Loa. We present new87Sr/86Sr measurements of individual olivine‐hosted melt inclusions from three Hawaiian volcanoes, Mauna Loa, Loihi, and Koolau. The data set includes a Mauna Loa melt inclusion with the highest reported Sr anomaly (or highest (Sr/Ce)N, which is 7.2) for Hawai'i. All melt inclusions have87Sr/86Sr values within the range reported previously for the lavas from each volcano. Critically, the87Sr/86Sr of the high (Sr/Ce)Nmelt inclusion lies within the narrow range of87Sr/86Sr for Mauna Loa melts that lack high (Sr/Ce)Nsignatures. Therefore, to explain the high (Sr/Ce)Nratio of the ghost plagioclase signature using an ancient recycled gabbro, the gabbro‐infused mantle source would have had to evolve, by chance, to have the same87Sr/86Sr as the source of the Mauna Loa melts that lack a recycled gabbro (ghost plagioclase) signature. Alternatively, shallow‐level diffusive interactions between Mauna Loa plagioclase‐rich cumulates and a percolating mantle‐derived melt provides a simpler explanation for the presence of the high (Sr/Ce)NMauna Loa melts.

     
    more » « less