Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals.
Chirality and polarity are the two most important and representative symmetry‐dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror‐related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest‐level challenge. Herein, a new symmetry‐breaking strategy that employs heteroanionic groups to construct hourglass‐like [Sr3OGeS3]2+and [Sr3SGeS3]2+groups to design and synthesize a new oxychalcogenide Sr18Ge9O5S31with chiral‐polar duality is proposed. The presence of two enantiomers of Sr18Ge9O5S31is confirmed by the single‐crystal X‐ray diffraction. Its optical activity and ferroelectricity are also studied by solid‐state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18Ge9O5S31possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid‐infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry‐breaking and are able to provide some inspiration for exploring the chiral‐polar duality materials.
more » « less- PAR ID:
- 10479544
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 11
- Issue:
- 7
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr3SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations, a deposition approach is designed and implemented to achieve the adsorption‐controlled growth of epitaxial Sr3SnO single‐crystal films by molecular‐beam epitaxy (MBE). In situ transport and angle‐resolved photoemission spectroscopy measurements reveal the metallic and electronic structure of the as‐grown samples. Compared with conventional MBE, the used synthesis route results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of Sr3SnO opens opportunities to manipulate topological states by tuning symmetries via strain engineering and heterostructuring.
-
Abstract Recently, superconductivity at high temperatures is observed in bulk La3Ni2O7−δunder high pressure. However, the attainment of high‐purity La3Ni2O7−δsingle crystals remains a formidable challenge. Here, the crystal structure and physical properties of single crystals of Sr‐doped La3Ni2O7synthesized at high pressure (20 GPa) and high temperature (1400 °C) are reported. Through single crystal X‐ray diffraction, it is shown that high‐pressure‐synthesized paramagnetic Sr‐doped La3Ni2O7crystallizes in an orthorhombic structure with Ni─O─Ni bond angles of 173.4(2)° out‐of‐plane and 175.0(2)°and 176.7(2)°in plane. The substitution of Sr alters in band filling and the ratio of Ni2+/Ni3+in Sr‐doped La3Ni2O7, aligning them with those of “La3Ni2O7.05”, thereby leading to significant modifications in properties under high pressure relative to the unsubstituted parent phase. At ambient pressure, Sr‐doped La3Ni2O7exhibits insulating properties, and the conductivity increases as pressure goes up to 10 GPa. However, upon further increasing pressure beyond 10.7 GPa, Sr‐doped La3Ni2O7transits back from a metal‐like behavior to an insulator. The insulator–metal–insulator trend under high pressure dramatically differs from the behavior of the parent compound La3Ni2O7−δ, despite their similar behavior in the low‐pressure regime. These experimental results underscore the considerable challenge in achieving superconductivity in nickelates.
-
Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−
x Srx HfO3system. The resulting (240)‐oriented PbHfO3(Pba 2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP 4mm phase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−x Srx HfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (E B) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (U r) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofE B = 5.12 ± 0.5 MV cm−1,U r = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.