skip to main content


Title: Evaluation of the Effect of Thermal Oxidation and Moisture on the Interfacial Shear Strength of Unidirectional IM7/BMI Composite by Fiber Push-in Nanoindentation
Fiber push-in nanoindentation is conducted on a unidirectional carbon fiber reinforced bismaleimide resin composite (IM7/BMI) after thermal oxidation to determine the interfacial shear strength. A unidirectional IM7/BMI laminated plate is isothermally oxidized under various conditions: in air for 2 months at 195 °C and 245 °C, and immersed in water for 2 years at room temperature to reach a moisturesaturated state. The water-immersed specimens are subsequently placed in a preheated environment at 260 °C to receive sudden heating, or are gradually heated at a rate of approximately 6 °C/min. A flat punch tip of 3 μm in diameter is used to push the fiber into the matrix while the resulting loaddisplacement data is recorded. From the load-displacement data, the interfacial shear strength is determined using a shear-lag model, which is verified by finite element method simulations. It is found that thermal oxidation at 245 °C in air leads to a significant reduction in interfacial shear strength of the IM7/BMI unidirectional composite, while thermal oxidation at 195 °C and moisture concentration have a negligible effect on the interfacial shear strength. For moisture-saturated specimens under a slow heating rate, there is no detectable reduction in the interfacial shear strength. In contrast, the moisture-saturated specimens under sudden heating show a significant reduction in interfacial shear strength. Scanning electron micrographs of IM7/BMI composite reveal that both thermal oxidation at 245 °C in air and sudden heating induced microcracks and debonding along the fiber/matrix interface, thereby weakening the interface, which is the origin of failure mechanism.  more » « less
Award ID(s):
1636306
NSF-PAR ID:
10048020
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Experimental Mechanics
ISSN:
0014-4851
Page Range / eLocation ID:
1-13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer matrix composites are popular in the aerospace industry due to their high strength to weight ratio. While they have become popular, understanding and predicting their specific damage evolution mechanisms remains a challenge especially in designing with damage tolerance criteria. One challenge often faced is the presence of surface damage either induced during manufacturing, machining, or service of a composite part. While many studies have investigated how quasi-static, low-velocity, and ballistic impact results in damage in the material, there remains a need to further understand the reduction in performance that results from such surface damage. In this work, micro-indentation was conducted on a unidirectional IM7/8552 laminate composite specimen to induce quasi-static impact damage that results in surface damage. The specimen was then loaded in tension to 33% of its expected failure load and imaged using synchrotron X-ray micro-computed tomography to qualitatively investigate the progression of surface damage into sub-surface damage. This work shows that at 33% of tensile failure load, surface damage propagates into delamination and fiber breakage of plies directly sub-surface. This work sheds light on the progression of surface damage at loads less than 50% of the ultimate strength of a unidirectional laminate composite. 
    more » « less
  2. Polymer matrix composites have high strengths in tension. However, their compressive strengths are much lower than their tensile strengths due to their weak fiber/matrix interfacial shear strengths. We recently developed a new approach to fabricate composites by overwrapping individual carbon fibers or fiber tows with a carbon nanotube sheet and subsequently impregnate them into a matrix to enhance the interfacial shear strengths without degrading the tensile strengths of the carbon fibers. In this study, a theoretical analysis is conducted to identify the appropriate thickness of the nanocomposite interphase region formed by carbon nanotubes embedded in a matrix. Fibers are modeled as an anisotropic elastic material, and the nanocomposite interphase region and the matrix are considered as isotropic. A microbuckling problem is solved for the unidirectional composite under compression. The analytical solution is compared with finite element simulations for verification. It is determined that the critical load at the onset of buckling is lower in an anisotropic carbon fiber composite than in an isotropic fibfer composite due to lower transverse properties in the fibers. An optimal thickness for nanocomposite interphase region is determined, and this finding provides a guidance for the manufacture of composites using aligned carbon nanotubes as fillers in the nanocomposite interphase region. 
    more » « less
  3. Abstract

    The article examines degradation of a SiC‐based fiber composite containing Tyranno ZMI fibers in water vapor at elevated temperatures (800°C and 1100°C). Degradation is characterized through mechanical tests under cyclic and quasi‐static tensile loading in the near‐threshold regime, at stresses at or slightly above the matrix cracking limit. These tests are augmented by examinations of fracture surfaces and polished cross‐sections, measurements of fracture mirror radii, and measurements of interfacial debond toughness and sliding resistance. Degradation involves highly localized consumption of fibers through reactions of water vapor with the fibers and the BN coatings in regions adjacent to the few matrix cracks present at low stresses; the global hysteresis response and the average interfacial properties are minimally affected. Boria formed by oxidation of BN appears to play a fluxing role; it combines with silica on the fibers to form a non‐protective molten glass. Inhomogeneous fiber consumption leads to stress concentrations in the fibers and hence reduced fiber strength. Spatial variations in the degradation process occur at two length scales: at the macroscopic scale, because of cracking of the external CVI SiC overcoat and subsequent water ingress through the cracks, and at the tow‐scale, because of cracking of the CVI SiC around the tows. Parsing the kinetic processes over the two length scales remains a significant challenge.

     
    more » « less
  4. 3D printing allows for moldless fabrication of continuous fiber composites with high design freedom and low manufacturing cost per part, which makes it particularly well-suited for rapid prototyping and composite product development. Compared to thermal-curable resins, UV-curable resins enable the 3D printing of composites with high fiber content and faster manufacturing speeds. However, the printed composites exhibit low mechanical strength and weak interfacial bonding for high-performance engineering applications. In addition, they are typically not reprocessable or repairable; if they could be, it would dramatically benefit the rapid prototyping of composite products with improved durability, reliability, cost savings, and streamlined workflow. In this study, we demonstrate that the recently emerged two-stage UV-curable resin is an ideal material candidate to tackle these grand challenges in 3D printing of thermoset composites with continuous carbon fiber. The resin consists primarily of acrylate monomers and crosslinkers with exchangeable covalent bonds. During the printing process, composite filaments containing up to 30.9% carbon fiber can be rapidly deposited and solidified through UV irradiation. After printing, the printed composites are subjected to post-heating. Their mechanical stiffness, strength, and inter-filament bonding are significantly enhanced due to the bond exchange reactions within the thermoset matrix. Furthermore, the utilization of the two-stage curable resin enables the repair, reshaping, and recycling of 3D printed thermosetting composites. This study represents the first detailed study to explore the benefits of using two-stage UV curable resins for composite printing. The fundamental understanding could potentially be extended to other types of two-stage curable resins with different molecular mechanisms. 
    more » « less
  5. Abstract

    This study aimed to understand the microphysical processes that affect rapid intensity changes of tropical cyclones (TCs) over the Bay of Bengal (BoB). Four representative TCs were simulated using the Weather Research and Forecasting model with storm tracking nested configuration (at 9‐km and 3‐km resolution). Results indicate that the inner‐core heating strongly correlated (r > 0.85) with the precipitated compared to non‐precipitated hydrometeors. Furthermore, the vertical distribution of hydrometeors and heating is dependent on inner‐core updrafts and relative humidity. A novel composite analysis of microphysical processes indicates that the warmer (2 K) inner core is close to saturation (>90%) with excess water vapor (>2–3 × 10−3 kg·kg−1), which enhances the latent heat release (LHR) through condensation below the freezing level during the rapid intensification (RI) onset. In addition, during RI, strong updrafts transport the water vapor (>2 × 10−3 kg·kg−1) and cloud liquid water (2.5 × 10−4 kg·kg−1) to above freezing level, and enhance the LHR because of deposition and freezing respectively. The increased precipitating particles in the saturated inner core also enhance LHR. The symmetric convection structured by the atmospheric moisture causes the formation of prolonged RI episodes, as seen in TCPhailin. During rapid weakening (RW), asymmetric and relatively fewer hydrometeors are evident, along with the presence of weak updrafts and strong shear. The dry‐air intrusion into the inner core also causes the cooling processes (evaporation and sublimation). The enhancement or reduction of moist static energy and potential vorticity is associated with increased or reduced LHR in the TC rapid intensity changes.

     
    more » « less