Abstract ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity.
more »
« less
Egg viability decreases rapidly with time since ovulation in the rainbow darter Etheostoma caeruleum : implications for the costs of choosiness
Egg viability in the rainbow darterEtheostoma caeruleum, a fish apparently lacking female mate choice, was found to decline rapidly after ovulation. It was observed that the majority of a female's clutch may fail to hatch if she is prevented from mating for as little as 6 h. These data suggest that exercising female mate preferences may be selectively disfavoured inE. caeruleumdue to the high cost of delaying mating.
more »
« less
- Award ID(s):
- 1701676
- PAR ID:
- 10048028
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Fish Biology
- Volume:
- 92
- Issue:
- 2
- ISSN:
- 0022-1112
- Page Range / eLocation ID:
- p. 532-536
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dimethylsulfoniopropionate (DMSP) is produced by many species of marine phytoplankton and has been reported to provide a variety of beneficial functions including osmoregulation. Dinoflagellates are recognized as majorDMSPproducers; however, accumulation has been shown to be highly variable in this group. We explored the effect of hyposaline transfer inGambierdiscus belizeanusbetween ecologically relevant salinities (36 and 31) onDMSPaccumulation, Chla, cell growth, and cell volume, over 12 d. Our results showed thatG. belizeanusmaintained an intracellularDMSPcontent of 16.3 pmol cell−1and concentration of 139 mMin both salinities. Although this intracellular concentration was near the median reported for other dinoflagellates, the cellular content achieved byG. belizeanuswas the highest reported of any dinoflagellate thus far, owing mainly to its large size.DMSPlevels were not significantly affected by salinity treatment but did change over time during the experiment. Salinity, however, did have a significant effect on the ratio ofDMSP:Chla, suggesting that salinity transfer ofG. belizeanusinduced a physiological response other thanDMSPadjustment. A survey ofDMSPcontent in a variety ofGambierdiscusspecies and strains revealed relatively highDMSPconcentrations (1.0–16.4 pmol cell−1) as well as high intrageneric and intraspecific variation. We conclude that, althoughDMSPmay not be involved in long‐term (3–12 d) osmoregulation in this species,G. belizeanusand otherGambierdiscusspecies may be important contributors toDMSPproduction in tropical benthic microalgal communities due to their large size and high cellular content.more » « less
-
Abstract Staphylococcus aureusis an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users.S. aureusconcentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk ofS. aureusinfections from environmental waters,S. aureussurvival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measureS. aureusin turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhancedS. aureussurvival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi.S. aureuswas detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations ofS. aureuswere in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmentalS. aureusconcentrations.S. aureuspersistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence ofS. aureuscommunities that may increase the risk of exposure in environmental waters. Practitioner PointsStaphylococcus aureusconcentrations, survival, and persistence were assessed in environmental fresh and brackish waters.Experimental design preserved in situ conditions to measureS. aureussurvival.Higher initialS. aureusconcentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.Water turbidity and salinity were both positively associated withS. aureusconcentrations and persistence.Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk toS. aureus.more » « less
-
Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.AtCCC‐GFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.more » « less
-
Abstract Single‐nucleotide polymorphisms (SNPs) are preferred over microsatellite markers in many evolutionary studies, but have only recently been applied to studies of parentage. Evaluations ofSNPs and microsatellites for assigning parentage have mostly focused on special cases that require a relatively large number of heterozygous loci, such as species with low genetic diversity or with complex social structures. We developed 120SNPmarkers from a transcriptome assembled usingRNA‐sequencing of a songbird with the most common avian mating system—social monogamy. We compared the effectiveness of 97 novelSNPs and six previously described microsatellites for assigning paternity in the black‐throated blue warbler,Setophaga caerulescens. We show that the full panel of 97SNPs (meanHo = 0.19) was as powerful for assigning paternity as the panel of multiallelic microsatellites (meanHo = 0.86). Paternity assignments using the two marker types were in agreement for 92% of the offspring. Filtering individual samples by a 50% call rate andSNPs by a 75% call rate maximized the number of offspring assigned with 95% confidence usingSNPs. We also found that the 40 most heterozygousSNPs (meanHo = 0.37) had similar power to assign paternity as the full panel of 97SNPs. These findings demonstrate that a relatively small number of variableSNPs can be effective for parentage analyses in a socially monogamous species. We suggest that the development ofSNPmarkers is advantageous for studies that require high‐throughput genotyping or that plan to address a range of ecological and evolutionary questions.more » « less
An official website of the United States government
