skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effect of Protein Fusions on the Production and Mechanical Properties of Protein-Based Materials
Award ID(s):
1151394
PAR ID:
10048051
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
25
Issue:
9
ISSN:
1616-301X
Page Range / eLocation ID:
1442 to 1450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface.In vitroandin vivoexperiments indicate that Prion protein misfolding, aggregation, and toxicity are sensitive to the lipid composition of plasma membranes and vesicles. A picture of the underlying biophysical driving forces that explain the effect of Prion protein - lipid interactions in physiological conditions is needed to develop a structural model of Prion protein conformational conversion. To this end, we use molecular dynamics simulations that mimic the interactions between the globular domain of PrPCanchored to model membrane patches. In addition, we also simulate the Doppel protein anchored to such membrane patches. The Doppel protein is the closest in the phylogenetic tree to PrPC, localizes in an extracellular milieu similar to that of PrPC, and exhibits a similar topology to PrPCeven if the amino acid sequence is only 25% identical. Our simulations show that specific protein-lipid interactions and conformational constraints imposed by GPI anchoring together favor specific binding sites in globular PrPCbut not in Doppel. Interestingly, the binding sites we found in PrPCcorrespond to prion protein loops, which are critical in aggregation and prion disease transmission barrier (β2-α2 loop) and in initial spontaneous misfolding (α2-α3 loop). We also found that the membrane re-arranges locally to accommodate protein residues inserted in the membrane surface as a response to protein binding. 
    more » « less
  2. Association of proteins to a significant extent is determined by their geometric complementarity. Large-scale recognition factors, which directly relate to the funnel-like intermolecular energy landscape, provide important insights into the basic rules of protein recognition. Previously, we showed that simple energy functions and coarse-grained models reveal major characteristics of the energy landscape. As new computational approaches increasingly address structural modeling of a whole cell at the molecular level, it becomes important to account for the crowded environment inside the cell. The crowded environment drastically changes protein recognition properties, and thus significantly alters the underlying energy landscape. In this study, we addressed the effect of crowding on the protein binding funnel, focusing on the size of the funnel. As crowders occupy the funnel volume, they make it less accessible to the ligands. Thus, the funnel size, which can be defined by ligand occupancy, is generally reduced with the increase of the crowders concentration. This study quantifies this reduction for different concentration of crowders and correlates this dependence with the structural details of the interacting proteins. The results provide a better understanding of the rules of protein association in the crowded environment. 
    more » « less
  3. Abstract MotivationProtein language models based on the transformer architecture are increasingly improving performance on protein prediction tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language models appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models encode structural information and to what extent. ResultsWe address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from sequence information alone requires structural knowledge, especially in the “twilight zone” of very low sequence identity. Through rigorous testing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of parameters in a zero-shot setting. Our findings indicate that while transformer-based protein language models outperform traditional sequence alignment methods, they still struggle in the twilight zone. This suggests that current protein language models have not sufficiently learned protein structure to address remote homology prediction when sequence signals are weak. Availability and implementationWe believe this opens the way for further research both on remote homology prediction and on the broader goal of learning sequence- and structure-rich representations of protein molecules. All code, data, and models are made publicly available. 
    more » « less
  4. The framing of global food challenges as a matter of producing enough protein deserves critical assessment. We argue that powerful actors in the food system are responding to this apparent protein shortage in a way that deflects from the critical environmental and social challenges associated with conventional livestock production. 
    more » « less