skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Both life‐history plasticity and local adaptation will shape range‐wide responses to climate warming in the tundra plant Silene acaulis
Abstract

Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.

 
more » « less
Award ID(s):
1637686 1242558 1753954 1753980
NSF-PAR ID:
10048065
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
24
Issue:
4
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1614-1625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Populations of cold‐adapted species at the trailing edges of geographic ranges are particularly vulnerable to the negative effects of climate change from the combination of exposure to warm temperatures and high sensitivity to heat. Many of these species are predicted to decline under future climate scenarios, but they could persist if they can adapt to warming climates either physiologically or behaviourally. We aim to understand local variation in contemporary habitat use and use this information to identify signs of adaptive capacity. We focus on moose (Alces alces), a charismatic species of conservation and public interest.

    Location

    The northeastern United States, along the trailing edge of the moose geographic range in North America.

    Methods

    We compiled data on occurrences and habitat use of moose from remote cameras and GPS collars across the northeastern United States. We use these data to build habitat suitability models at local and regional spatial scales and then to predict future habitat suitability under climate change. We also use fine‐scale GPS data to model relationships between habitat use and temperature on a daily temporal scale and to predict future habitat use.

    Results

    We find that habitat suitability for moose will decline under a range of climate change scenarios. However, moose across the region differ in their use of climatic and habitat space, indicating that they could exhibit adaptive capacity. We also find evidence for behavioural responses to weather, where moose increase their use of forested wetland habitats in warmer places and/or times.

    Main conclusions

    Our results suggest that there will be significant shifts in moose distribution due to climate change. However, if there is spatial variation in thermal tolerance, trailing‐edge populations could adapt to climate change. We highlight that prioritizing certain habitats for conservation (i.e., thermal refuges) could be crucial for this adaptation.

     
    more » « less
  2. Abstract

    Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long‐term demography dataset for the black‐throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low‐elevation plot became locally extinct by 2017. The local population at the mid‐elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid‐elevation plot, although results were more equivocal at the low‐elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low‐elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor‐quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate‐mediated range shift hypothesis. Local populations of black‐throated blue warblers near the warm‐edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

     
    more » « less
  3. Abstract

    A possible response of many plant species to global warming is migration to higher elevations. However, these migrations may not be required if species can tolerate higher temperatures, or may be prevented if there are other factors such as changes in soil conditions that make upslope areas unsuitable.

    We used a set of 3‐year field transplant experiments in the remote Peruvian Andes to simulate two possible responses of an abundant tropical montane cloudforest tree species (Weinmania bangii) to global warming: (a) ‘upward migration’, in which case seedlings ofW. bangii'swere grown at their current elevation/temperature but in soils transplanted from higher elevations and (b) ‘migration failure’, in which case seedlings were transplanted downslope along with their home soils into areas that are 1°C or 2°C warmer. We conducted separate experiments with populations from the upper/leading edge, middle and lower/trailing edges ofW. bangii'selevational/thermal range to assess the influence of local adaptation on responses to changes in temperature or soil.

    We found that seedling survival and growth were not affected by changes in soil conditions, regardless of the origin population. However, seedling survival decreased with temperature. A simulated warming of 1°C caused a significant reduction in the survival of seedlings transplanted from the mid‐range population, and 2°C warming caused a severe decrease in the survival of seedlings transplanted from both the mid‐range and bottom‐edge populations.

    Synthesis. Our findings reveal that rising temperatures are a serious threat to plants, especially in populations growing in the hotter portion of their species’ range. At least in the case ofW. bangii,novel soil conditions will not limit the establishment or growth of seedlings at higher elevations. As such, decreases in the survivorship at lower elevations may be offset through upward migrations as temperatures continue to increase.

     
    more » « less
  4. Abstract

    The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog,Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater meanTbandTprefthan those from forests. In contrast,CTmaxandTSMdid not differ significantly between habitats. However,CTmaxdid increase moderately with increasingTb, suggesting that changes inCTmaxmay be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. AlthoughO. pumilioexhibited moderate divergence inTpref,CTmaxappears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain theirTbbelow air temperatures that reach or exceedCTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming.

    Abstract in Spanish is available with online material.

     
    more » « less
  5. Marine species worldwide are responding to ocean warming by shifting their ranges to new latitudes and, for intertidal species, elevations. Demographic traits can vary across populations spanning latitudinal and elevational ranges, with impacts on population growth. Understanding how demography varies across gradients from range center to edge could help us predict future shifts, species assemblages, and extinction risks. We investigated demographic traits for 2 range-expanding whelk species:Acanthinucella spirataandMexacanthina lugubris.We measured reproductive output across environmental (latitudinal and shore elevation) gradients along the coast of California, USA. We also conducted intensive measurements of offspring condition (survival and thermal tolerance) across shore elevation forM. lugubrisat one site. We found no difference in reproductive output, body size, or larval survival across shore heights forM. lugubris,suggesting that egg-laying behavior buffers developing stages from the relatively high level of thermal variation experienced due to daily tidal emersion. However, across latitudes, reproductive output increased toward the leading range edge forA. spirata, and body size increased for both species. Increased vital rates at the leading range edge could increase whelk population growth and expansion, allowing species to persist under climate change even if contractions occur at trailing edges.

     
    more » « less