skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A TEST FOR ENVIRONMENTAL EFFECTS ON BEHAVIORAL ISOLATION IN TWO SPECIES OF KILLIFISH: BEHAVIORAL ISOLATION IN KILLIFISH
Award ID(s):
0953716
PAR ID:
10048082
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Evolution
Volume:
66
Issue:
10
ISSN:
0014-3820
Page Range / eLocation ID:
3224 to 3237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Divergent natural selection has the potential to drive the evolution of reproductive isolation. The euryhaline killifish Lucania parva has stable populations in both fresh water and salt water. Lucania parva and its sister species, the freshwater L. goodei , are isolated by both prezygotic and postzygotic barriers. To further test whether adaptation to salinity has led to the evolution of these isolating barriers, we tested for incipient reproductive isolation within L. parva by crossing freshwater and saltwater populations. We found no evidence for prezygotic isolation, but reduced hybrid survival indicated that postzygotic isolation existed between L. parva populations. Therefore, postzygotic isolation evolved before prezygotic isolation in these ecologically divergent populations. Previous work on these species raised eggs with methylene blue, which acts as a fungicide. We found this fungicide distorts the pattern of postzygotic isolation by increasing fresh water survival in L. parva , masking species/population differences, and underestimating hybrid inviability. 
    more » « less
  2. Background: The origin and maintenance of species is a unifying theme in evolutionary biology. Mate choice and selection on sexual signals have emerged as powerful drivers of reproductive isolation – the key pillar of the biological species concept. The mechanistic underpinnings of isolating behaviors lie in the circuit- and cellular-level properties of the brain and remain relatively understudied. Summary: Here, I argue that temporal auditory selectivity in anuran amphibians offers a window into the proximate mechanisms of reproductive isolation. First, I discuss anuran behaviors as a longstanding neuroethological model with which to examine behavioral reproductive isolation and its neural correlates. Next, I review how modern neurobiological techniques are revealing the proximate mechanisms of the evolution of divergent mate preferences in anurans, highlighting cellular-level neural shifts in temporal coding. Finally, I discuss future research directions to reveal the neural mechanisms through which behavioral isolation is generated and maintained in anuran model systems. Key Messages: Anurans offer a powerful model for addressing questions about how neural barriers to gene flow arise across biological scales and how changes in the brain contribute to speciation. Modern evolutionary neurobiology will benefit from applying new tools to this longstanding neuroethological model clade. 
    more » « less