skip to main content


Title: The sedimentary and remote‐sensing reflection of biomass burning in Europe
Abstract Aim

We provide the first European‐scale geospatial training set relating the charcoal signal in surface lake sediments to fire parameters (number, intensity and area) recorded by satellite moderate resolution imaging spectroradiometer (MODIS) sensors. Our calibration is intended for quantitative reconstructions of key fire‐regime parameters by using sediment sequences of microscopic (MIC from pollen slides, particles 10–500 µm) and macroscopic charcoal (MAC from sieves, particles > 100 µm).

Location

North–south and east–west transects across Europe, covering the mediterranean, temperate, alpine, boreal and steppe biomes.

Time period

Lake sediments and MODIS active fire and burned area products were collected for the years 2012–2015.

Methods

Cylinder sediment traps were installed in lakes to annually collect charcoal particles in sediments. We quantitatively assessed the relationships between MIC and MAC influx (particles/cm2/year) and the MODIS‐derived products to identify source areas of charcoal and the extent to which lake‐sediment charcoal is linked to fire parameters across the continent.

Results

Source area of sedimentary charcoal was estimated to a 40‐km radius around sites for both MIC and MAC particles. Fires occurred in grasslands and in forests, with grass morphotypes of MAC accurately reflecting the burned fuel‐type. Despite the lack of local fires around the sites, MAC influx levels reached those reported for local fires. Both MIC and MAC showed strong and highly significant relationships with the MODIS‐derived fire parameters, as well as with climatic variation along a latitudinal temperature gradient.

Main conclusions

MIC and MAC are suited to quantitatively reconstructing fire number and fire intensity on a regional scale. However, burned area may only be estimated using MAC. Local fires may be identified by using several lines of evidence, e.g. analysis of large particles (> 600 µm), magnetic susceptibility and sedimentological data. Our results offer new insights and applications to quantitatively reconstruct fires and to interpret available sedimentary charcoal records.

 
more » « less
NSF-PAR ID:
10048097
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
27
Issue:
2
ISSN:
1466-822X
Page Range / eLocation ID:
p. 199-212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.

    To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.

    A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.

    Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.

    Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.

     
    more » « less
  2. Abstract Aim

    Ongoing and future anthropogenic climate change poses one of the greatest threats to biodiversity, affecting species distributions and ecological interactions. In the Amazon, climatic changes are expected to induce warming, disrupt precipitation patterns and of particular concern, to increase the intensity and frequency of droughts. Yet the response of ecosystems to intense warm, dry events is not well understood. In the Andes the mid‐Holocene dry event (MHDE),c. 9,000 to 4,000 years ago, was the warmest and driest period of the last 100,000 years which coincided with changes in evaporation and precipitation that caused lake levels to drop over most of tropical South America. This event probably approximates our near‐climatic future, and a critical question is:How much did vegetation change in response to this forcing?

    Location

    Lake Pata, Brazilian Western Amazonia.

    Taxon

    Terrestrial and aquatic plants.

    Methods

    We used pollen, charcoal, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N data from a new high‐resolution core that spans the lastc. 7,600 years history of Lake Pata.

    Results

    We found that in the wettest section of Amazonia changes associated with the MHDE were detected in the geochemistry analysis but that vegetation changed very little in response to drought during the Holocene. This is the first high‐resolution core without apparent hiatuses that spans most of the Holocene (last 7,600 cal yrbp) from Lake Pata, Brazil. Changes in the organic geochemistry of sediments indicated that between c. 6,500 and 3,600 cal yrbplake levels dropped. Vegetation, however, showed little change as near‐modern forests were seen throughout the record, evidencing the substantial resilience of this system. Only a few species replacements and minor fluctuations in abundance were observed in the pollen record.

    Main conclusions

    The mid‐Holocene warming and reduced precipitation had a limited impact on western Amazonian forests. We attribute much of the resilience to a lack of fire in this system, and that if human‐set fires were to be introduced, the forest destruction from that cause would override that induced by climate alone.

     
    more » « less
  3. Abstract Background

    Climate change is expected to increase fire activity across the circumboreal zone, including central Siberia. However, few studies have quantitatively assessed potential changes in fire regime characteristics, or considered possible spatial variation in the magnitude of change. Moreover, while simulations indicate that changes in climate are likely to drive major shifts in Siberian vegetation, knowledge of future forest dynamics under the joint influence of changes in climate and fire regimes remains largely theoretical. We used the forest landscape model, LANDIS-II, with PnET-Succession and the BFOLDS fire extension to simulate changes in vegetation and fire regime characteristics under four alternative climate scenarios in three 10,000-km2study landscapes distributed across a large latitudinal gradient in lowland central Siberia. We evaluated vegetation change using the fire life history strategies adopted by forest tree species: fire resisters, fire avoiders, and fire endurers.

    Results

    Annual burned area, the number of fires per year, fire size, and fire intensity all increased under climate change. The relative increase in fire activity was greatest in the northernmost study landscape, leading to a reduction in the difference in fire rotation period between study landscapes. Although the number of fires per year increased progressively with the magnitude of climate change, mean fire size peaked under mild or moderate climate warming in each of our study landscapes, suggesting that fuel limitations and past fire perimeters will feed back to reduce individual fire extent under extreme warming, relative to less extreme warming scenarios. In the Southern and Mid-taiga landscapes, we observed a major shift from fire resister-dominated forests to forests dominated by broadleaved deciduous fire endurers (BetulaandPopulusgenera) under moderate and extreme climate warming scenarios, likely associated with the substantial increase in fire activity. These changes were accompanied by a major decrease in average cohort age and total vegetation biomass across the simulation landscapes.

    Conclusions

    Our results imply that climate change will greatly increase fire activity and reduce spatial heterogeneity in fire regime characteristics across central Siberia. Potential ecological consequences include a widespread shift toward forests dominated by broadleaved deciduous species that employ a fire endurer strategy to persist in an increasingly fire-prone environment.

     
    more » « less
  4. Abstract Aim

    Although it is established that climate and fire have greatly influenced the long‐term ecosystem dynamics of Patagonia south of 40°S, the environmental history from northernmost Patagonia (37–40°S), where endemic and endangered monkey puzzle tree (Araucaria araucana) occurs, is poorly known. Here we ask: (a) What is the Holocene vegetation and fire history at the north‐eastern extent ofA. araucanaforest? (b) How have climate and humans influenced the past distribution ofA. araucana?

    Location

    Northernmost Patagonia, Argentina and Chile (37–40°S).

    Taxa

    Araucaria araucana,Nothofagus, Poaceae.

    Methods

    Sedimentary pollen and charcoal from Laguna Portezuelo (37.9°S, 71.0°W; 1,730 m; 11,100 BP) were evaluated using statistical methods and compared with other palaeoecological, independent palaeoclimate, and historical records to assess how changes in climate and land use influenced local‐to‐regional environmental history.

    Results

    An open forest‐steppe landscape persisted at L. Portezuelo throughout the Holocene with generally low‐to‐moderate fire activity. IncreasedNothofaguspollen after ~6,590 BP suggests increases in shrubland and moisture in association with cooler conditions and greater seasonality and ENSO activity.Araucariapollen appeared at L. Portezuelo at ~6,380 BP, but was low in abundance until ~370 BP, when it rose with charcoal levels. This increase inAraucariaand fire coincided with a regional influx of Mapuche American Indians.Nothofagusdeforestation andPinussilviculture marked Euro‐American settlement beginning in the 19–20th century.

    Main conclusions

    (a) Rapid postglacial warming and drying limited the distribution ofAraucariain the central valley of Chile. In the middle and late Holocene, decreased temperatures and greater seasonality and ENSO activity increased precipitation variability allowingAraucariaexpansion at its north‐eastern limit. (b) Greater abundance ofAraucariaand heightened fire activity at L. Portezuelo after 370 BP coincided with increased Mapuche‐Pehuenche American Indian land use, suggesting thatAraucariamay have been managed in a human‐altered landscape.

     
    more » « less
  5. Abstract. We present the Fire Inventory from National Center for Atmospheric Research (NCAR) version 2.5 (FINNv2.5), a fire emissions inventory that provides publicly available emissions of trace gases and aerosols for various applications, including use in global and regional atmospheric chemistry modeling. FINNv2.5 includes numerous updates to the FINN version 1 framework to better represent burned area, vegetation burned, and chemicals emitted. Major changes include the use of active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375 m spatial resolution, which allows smaller fires to be included in the emissions processing. The calculation of burned area has been updated such that a more rigorous approach is used to aggregate fire detections, which better accounts for larger fires and enables using multiple satellite products simultaneously for emissions estimates. Fuel characterization and emissions factors have also been updated in FINNv2.5. Daily fire emissions for many trace gases and aerosols are determined for 2002–2019 (Moderate Resolution Imaging Spectroradiometer (MODIS)-only fire detections) and 2012–2019 (MODIS + VIIRS fire detections). The non-methane organic gas emissions are allocated to the species of several commonly used chemical mechanisms. We compare FINNv2.5 emissions against other widely used fire emissions inventories. The performance of FINNv2.5 emissions as inputs to a chemical transport model is assessed with satellite observations. Uncertainties in the emissions estimates remain, particularly in Africa and South America during August–October and in southeast and equatorial Asia in March and April. Recommendations for future evaluation and use are given.

     
    more » « less