skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications
Abstract. We present the Fire Inventory from National Center for Atmospheric Research (NCAR) version 2.5 (FINNv2.5), a fire emissions inventory that provides publicly available emissions of trace gases and aerosols for various applications, including use in global and regional atmospheric chemistry modeling. FINNv2.5 includes numerous updates to the FINN version 1 framework to better represent burned area, vegetation burned, and chemicals emitted. Major changes include the use of active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375 m spatial resolution, which allows smaller fires to be included in the emissions processing. The calculation of burned area has been updated such that a more rigorous approach is used to aggregate fire detections, which better accounts for larger fires and enables using multiple satellite products simultaneously for emissions estimates. Fuel characterization and emissions factors have also been updated in FINNv2.5. Daily fire emissions for many trace gases and aerosols are determined for 2002–2019 (Moderate Resolution Imaging Spectroradiometer (MODIS)-only fire detections) and 2012–2019 (MODIS + VIIRS fire detections). The non-methane organic gas emissions are allocated to the species of several commonly used chemical mechanisms. We compare FINNv2.5 emissions against other widely used fire emissions inventories. The performance of FINNv2.5 emissions as inputs to a chemical transport model is assessed with satellite observations. Uncertainties in the emissions estimates remain, particularly in Africa and South America during August–October and in southeast and equatorial Asia in March and April. Recommendations for future evaluation and use are given.  more » « less
Award ID(s):
1748266
PAR ID:
10484212
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
16
Issue:
13
ISSN:
1991-9603
Page Range / eLocation ID:
3873 to 3891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundAccurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methodsIn this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections. Hourly time series are created by combining VIIRS estimates with Fire Radiative Power (FRP) estimates from GOES-17 (Geostationary Operational Environmental Satellite) data. Conclusions, key results and implicationWe evaluate the performance of the algorithm for both accumulated and change in burned area between airborne observations, and specifically examine sensitivity to the choice of the parameter controlling how much the boundary can shrink towards the interior of the area polygon. Results of the hourly accumulation of burned area for multiple fires from 2019 to 2020 generally correlate strongly with airborne infrared (IR) observations collected by the United States Forest Service National Infrared Operations (NIROPS), exhibiting correlation coefficient values usually greater than 0.95 and errors <20%. 
    more » « less
  2. Accurate estimates of biomass burning (BB) emissions are of great importance worldwide due to the impacts of these emissions on human health, ecosystems, air quality, and climate. Atmospheric modeling efforts to represent these impacts require BB emissions as a key input. This paper is presented by the Biomass Burning Uncertainty: Reactions, Emissions and Dynamics (BBURNED) activity of the International Global Atmospheric Chemistry project and largely based on a workshop held in November 2023. The paper reviews 9 of the BB emissions datasets widely used by the atmospheric chemistry community, all of which rely heavily on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations of fires scheduled to be discontinued at the end of 2025. In this time of transition away from MODIS to new fire observations, such as those from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments, we summarize the contemporary status of BB emissions estimation and provide recommendations on future developments. Development of global BB emissions datasets depends on vegetation datasets, emission factors, and assumptions of fire persistence and phase, all of which are highly uncertain with high degrees of variability and complexity and are continually evolving areas of research. As a result, BB emissions datasets can have differences on the order of factor 2–3, and no single dataset stands out as the best for all regions, species, and times. We summarize the methodologies and differences between BB emissions datasets. The workshop identified 5 key recommendations for future research directions for estimating BB emissions and quantifying the associated uncertainties: development and uptake of satellite burned area products from VIIRS and other instruments; mapping of fine scale heterogeneity in fuel type and condition; identification of spurious signal detections and information gaps in satellite fire radiative power products; regional modeling studies and comparison against existing datasets; and representation of the diurnal cycle and plume rise in BB emissions. 
    more » « less
  3. Abstract The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) experiment was a multi‐agency, inter‐disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground‐based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC‐8 and two NOAA Twin Otter aircraft. The high‐altitude NASA ER‐2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC‐8 investigated 87 smaller fires in the Southeast with remote and in‐situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels consumed and fire radiative power using orbital and suborbital remote sensing observations collected during overflights of the fires and smoke plumes and ground sampling of fuels. 
    more » « less
  4. Uncertainty in satellite-derived burned area estimates are especially high in grassland systems, which are some of the most frequently burned ecosystems in the world. In this study, we compare differences in predicted burned area estimates for a region with the highest fire activity in North America, the Flint Hills of Kansas, USA, using the moderate resolution imaging spectroradiometer (MODIS) MCD64A1 burned area product and a customization of the MODIS MCD64A1 product using a major ground-truthing effort by the Kansas Department of Health and Environment (KDHE-MODIS customization). Local-scale ground-truthing and the KDHE-MODIS product suggests MODIS burned area estimates under predicted fire occurrence by 28% over a 19-year period in the Flint Hills ecoregion. Between 2001 and 2019, MODIS product indicated <1 million acres burned on average, which was far below the KDHE-MODIS customization (mean = 2.6 million acres). MODIS also showed that <1% of the Flint Hills burned 5 times from 2001–2019 (2001, 2002, 2007, 2012 and 2013), whereas KDHE-MODIS customization showed this never happened in any single year. KDHE-MODIS also captured some areas of the Flint Hills that burned every year (19 times out of 19 years), which is well-known with field inventory data, whereas the maximum fire occurrence in MODIS was 14 times in 19 years. Finally, MODIS never captured >8% burned area for any given year in the Flint Hills, even in years when fire activity was highest (2008, 2009, 2011, 2014). Based on these results, coupling MODIS burned area computations with local scale ground-truth efforts has the potential to significantly improve fire occurrence estimates and reduce uncertainty in other grassland and savanna regions. 
    more » « less
  5. Abstract Wildfire is a natural and integral ecosystem process that is necessary to maintain species composition, structure, and ecosystem function. Extreme fires have been increasing over the last decades, which have a substantial impact on air quality, human health, the environment, and climate systems. Smoke aerosols can be transported over large distances, acting as pollutants that affect adjacent and distant downwind communities and environments. Fire emissions are a complicated mixture of trace gases and aerosols, many of which are short‐lived and chemically reactive, and this mixture affects atmospheric composition in complex ways that are not completely understood. We present a review of the current state of knowledge of smoke aerosol emissions originating from wildfires. Satellite observations, from both passive and active instruments, are critical to providing the ability to view the large‐scale influence of fire, smoke, and their impacts. Progress in the development of fire emission estimates to regional and global chemical transport models has advanced, although significant challenges remain, such as connecting ecosystems and fuels burned with dependent atmospheric chemistry. Knowledge of the impact of smoke on radiation, clouds, and precipitation has progressed and is an essential topical research area. However, current measurements and parameterizations are not adequate to describe the impacts on clouds of smoke particles (e.g., CNN, INP) from fire emissions in the range of representative environmental conditions necessary to advance science or modeling. We conclude by providing recommendations to the community that we believe will advance the science and understanding of the impact of fire smoke emissions on human and environmental health, as well as feedback with climate systems. 
    more » « less