skip to main content


Title: Stability analysis and stabilization of Markovian jump systems with time-varying delay and uncertain transition information: Stability analysis and stabilization of Markovian jump systems with time-varying delay and uncertain transition information
NSF-PAR ID:
10048262
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
28
Issue:
1
ISSN:
1049-8923
Page Range / eLocation ID:
68 to 85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    This article presents a dissipativity approach for robustness analysis using the framework of integral quadratic constraints (IQCs). The derived results apply for linear time‐varying nominal systems with uncertain initial conditions. IQC multipliers are used to describe the sets of allowable uncertainty operators, and signal IQC multipliers are used to describe the sets of allowable disturbance signals. The novel concepts of dichotomic nodes and their corresponding factorizations are introduced, which allow for the aforementioned multipliers to be general time‐varying operators. The results are illustrated via the robustness analysis of a flight controller for an unmanned aircraft system tasked to perform a Split‐S maneuver.

     
    more » « less
  2. Summary

    This paper focuses on the robustness analysis of discrete‐time, linear time‐varying (LTV) systems subject to various uncertainties, such as static and dynamic, time‐invariant and time‐varying, linear perturbations, and unknown initial conditions. The proposed approach is based on integral quadratic constraint theory and allows for a potentially more accurate characterization of the set in which the initial state resides by imposing separate constraints on the initial values of the state variables as opposed to simply requiring the initial state to lie in some ellipsoid. The adopted problem formulation facilitates the analysis of uncertain LTV systems subject to disturbance inputs that are bounded pointwise in time, and the developed results enable determining useful pointwise bounds on the performance outputs given such inputs. The main analysis result is given for eventually periodic nominal systems, which include linear time‐invariant, finite horizon, and periodic systems as special cases. The analysis conditions are expressed as linear matrix inequalities. Two additional results stemming from the main analysis theorem are provided that can be used to determine overapproximated ellipsoidal reachable sets. Finally, the utility of the proposed approach is demonstrated in an illustrative example.

     
    more » « less
  3. Summary

    Robust control of parameter‐dependent input delay linear parameter‐varying (LPV) systems via gain‐scheduled dynamic output‐feedback control is considered in this paper. The controller is designed to provide disturbance rejection in the context of the induced‐norm or thenorm of the closed‐loop system in the presence of uncertainty and disturbances. A reciprocally convex approach is employed to bound the Lyapunov‐Krasovskii functional derivative and extract sufficient conditions for the controller characterization in terms of linear matrix inequalities (LMIs). The approach does not require the rate of the delay to be bounded, hence encompasses a broader family of input‐delay LPV systems with fast‐varying delays. The method is then applied to the air‐fuel ratio (AFR) control in spark ignition (SI) engines where the delay and the plant parameters are functions of the engine speed and mass air flow. The objectives are to track the commanded AFR signal and to optimize the performance of the three‐way catalytic converter (TWC) through the precise AFR control and oxygen level regulation, resulting in improved fuel efficiency and reduced emissions. The designed AFR controller seeks to provide canister purge disturbance rejection over the full operating envelope of the SI engine in the presence of uncertainties. Closed‐loop simulation results are presented to validate the controller performance and robustness while meeting AFR tracking and disturbance rejection requirements.

     
    more » « less
  4. null (Ed.)