This paper addresses the problem of hybrid control for a class of switched uncertain systems. The switched system under consideration is subject to structured uncertain dynamics in a linear fractional transformation (LFT) form and time-varying input delays. A novel hybrid controller is proposed, which consists of three major components: the integral quadratic constraint (IQC) dynamics, the continuous dynamics, and the jump dynamics. The IQC dynamics are developed by leveraging methodologies from robust control theory and are utilised to address the effects of time-varying input delays. The continuous dynamics are structured by feeding back not only measurement outputs but also some system's internal signals. The jump dynamics enforce a jump (update/reset) at every switching time instant for the states of both IQC dynamics and continuous dynamics. Based on this, robust stability of the overall hybrid closed-loop system is established under the average dwell time framework with multiple Lyapunov functions. Moreover, the associated control synthesis conditions are fully characterised as linear matrix inequalities, which can be solved efficiently. An application example on regulation of a nonlinear switched electronic circuit system has been used to demonstrate effectiveness and usefulness of the proposed approach.
more »
« less
Robustness analysis of uncertain time‐varying systems using integral quadratic constraints with time‐varying multipliers
Summary This article presents a dissipativity approach for robustness analysis using the framework of integral quadratic constraints (IQCs). The derived results apply for linear time‐varying nominal systems with uncertain initial conditions. IQC multipliers are used to describe the sets of allowable uncertainty operators, and signal IQC multipliers are used to describe the sets of allowable disturbance signals. The novel concepts of dichotomic nodes and their corresponding factorizations are introduced, which allow for the aforementioned multipliers to be general time‐varying operators. The results are illustrated via the robustness analysis of a flight controller for an unmanned aircraft system tasked to perform a Split‐S maneuver.
more »
« less
- Award ID(s):
- 1650465
- PAR ID:
- 10454314
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal of Robust and Nonlinear Control
- Volume:
- 31
- Issue:
- 3
- ISSN:
- 1049-8923
- Page Range / eLocation ID:
- p. 733-758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such inputoutput analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinitedimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinitedimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity.more » « less
-
Service systems abound with queues, but the most natural direct models are often time-varying queues, which may require nonstandard analysis methods beyond stochastic textbooks. This paper provides an overview of time-varying queues. Most of the recent literature concerns many-server queues, which arise in large-scale service systems, such as in customer contact centers and hospital emergency departments, but there also has been some new work on single-server queues with time-varying arrivals, which arise in some settings, such as airplanes coming to land at an airport, cars coming to a traffic intersection and medical staff waiting for the availability of special operating rooms in a hospital. The understanding of many-server queues and single-server queues is enhanced by heavy-traffic limits, which have been extended to time-varying models as well as stationary models.more » « less
-
ABSTRACT Individualized modeling has become increasingly popular in recent years with its growing application in fields such as personalized medicine and mobile health studies. With rich longitudinal measurements, it is of great interest to model certain subject‐specific time‐varying covariate effects. In this paper, we propose an individualized time‐varying nonparametric model by leveraging the subgroup information from the population. The proposed method approximates the time‐varying covariate effect using nonparametric B‐splines and aggregates the estimated nonparametric coefficients that share common patterns. Moreover, the proposed method can effectively handle various missing data patterns that frequently arise in mobile health data. Specifically, our method achieves subgrouping by flexibly accommodating varying dimensions of B‐spline coefficients due to missingness. This capability sets it apart from other fusion‐type approaches for subgrouping. The subgroup information can also potentially provide meaningful insight into the characteristics of subjects and assist in recommending an effective treatment or intervention. An efficient ADMM algorithm is developed for implementation. Our numerical studies and application to mobile health data on monitoring pregnant women's deep sleep and physical activities demonstrate that the proposed method achieves better performance compared to other existing methods.more » « less
-
A time-varying filter is proposed which improves by 5 dB upon traditional FRESH and Wiener filters when rejecting a pulsed radar signal. The filter is a Time-Varying FRESH (TVFRESH) filter, which applies different sets of filter weights in a periodic manner, with the same periodicities of the received signal. Matching the periodicities of the filter to that of the signal improves the rejection of interference, producing a better estimate of the desired signal. The simulated results show mitigating the interference from a radar signal to an Orthogonal Frequency Division Multiplexing (OFDM) signal.more » « less
An official website of the United States government
