skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-convex low-rank matrix recovery from corrupted random linear measurements
Recent work has demonstrated the effectiveness of gradient descent for recovering low-rank matrices from random linear measurements in a globally convergent manner. However, their performance is highly sensitive in the presence of outliers that may take arbitrary values, which is common in practice. In this paper, we propose a truncated gradient descent algorithm to improve the robustness against outliers, where the truncation is performed to rule out the contributions from samples that deviate significantly from the sample median. A restricted isometry property regarding the sample median is introduced to provide a theoretical footing of the proposed algorithm for the Gaussian orthogonal ensemble. Extensive numerical experiments are provided to validate the superior performance of the proposed algorithm.  more » « less
Award ID(s):
1650449
PAR ID:
10048415
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sampling Theory and Applications (SampTA), 2017 International Conference on
Page Range / eLocation ID:
134 to 137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work considers two related learning problems in a federated attack-prone setting – federated principal com- ponents analysis (PCA) and federated low rank column-wise sensing (LRCS). The node attacks are assumed to be Byzan- tine which means that the attackers are omniscient and can collude. We introduce a novel provably Byzantine-resilient communication-efficient and sample-efficient algorithm, called Subspace-Median, that solves the PCA problem and is a key part of the solution for the LRCS problem. We also study the most natural Byzantine-resilient solution for federated PCA, a geometric median based modification of the federated power method, and explain why it is not useful. Our second main contribution is a complete alternating gradient descent (GD) and minimization (altGDmin) algorithm for Byzantine-resilient horizontally federated LRCS and sample and communication complexity guarantees for it. Extensive simulation experiments are used to corroborate our theoretical guarantees. The ideas that we develop for LRCS are easily extendable to other LR recovery problems as well. 
    more » « less
  2. The mean squared error loss is widely used in many applications, including auto-encoders, multi-target regression, and matrix factorization, to name a few. Despite computational advantages due to its differentiability, it is not robust to outliers. In contrast, ℓ𝑝 norms are known to be robust, but cannot be optimized via, e.g., stochastic gradient descent, as they are non-differentiable. We propose an algorithm inspired by so-called model-based optimization (MBO), which replaces a non-convex objective with a convex model function and alternates between optimizing the model function and updating the solution. We apply this to robust regression, proposing SADM, a stochastic variant of the Online Alternating Direction Method of Multipliers (OADM) to solve the inner optimization in MBO. We show that SADM converges with the rate 𝑂(log𝑇/𝑇) . Finally, we demonstrate experimentally (a) the robustness of ℓ𝑝 norms to outliers and (b) the efficiency of our proposed model-based algorithms in comparison with gradient methods on autoencoders and multi-target regression. 
    more » « less
  3. null (Ed.)
    Growth mixture modeling is a popular analytic tool for longitudinal data analysis. It detects latent groups based on the shapes of growth trajectories. Traditional growth mixture modeling assumes that outcome variables are normally distributed within each class. When data violate this normality assumption, however, it is well documented that the traditional growth mixture modeling mislead researchers in determining the number of latent classes as well as in estimating parameters. To address nonnormal data in growth mixture modeling, robust methods based on various nonnormal distributions have been developed. As a new robust approach, growth mixture modeling based on conditional medians has been proposed. In this article, we present the results of two simulation studies that evaluate the performance of the median-based growth mixture modeling in identifying the correct number of latent classes when data follow the normality assumption or have outliers. We also compared the performance of the median-based growth mixture modeling to the performance of traditional growth mixture modeling as well as robust growth mixture modeling based on t distributions. For identifying the number of latent classes in growth mixture modeling, the following three Bayesian model comparison criteria were considered: deviance information criterion, Watanabe-Akaike information criterion, and leave-one-out cross validation. For the median-based growth mixture modeling and t -based growth mixture modeling, our results showed that they maintained quite high model selection accuracy across all conditions in this study (ranged from 87 to 100%). In the traditional growth mixture modeling, however, the model selection accuracy was greatly influenced by the proportion of outliers. When sample size was 500 and the proportion of outliers was 0.05, the correct model was preferred in about 90% of the replications, but the percentage dropped to about 40% as the proportion of outliers increased to 0.15. 
    more » « less
  4. We present a mathematical analysis of a non-convex energy landscape for robust subspace recovery. We prove that an underlying subspace is the only stationary point and local minimizer in a specified neighborhood under a deterministic condition on a dataset. If the deterministic condition is satisfied, we further show that a geodesic gradient descent method over the Grassmannian manifold can exactly recover the underlying subspace when the method is properly initialized. Proper initialization by principal component analysis is guaranteed with a simple deterministic condition. Under slightly stronger assumptions, the gradient descent method with a piecewise constant step-size scheme achieves linear convergence. The practicality of the deterministic condition is demonstrated on some statistical models of data, and the method achieves almost state-of-the-art recovery guarantees on the Haystack Model for different regimes of sample size and ambient dimension. In particular, when the ambient dimension is fixed and the sample size is large enough, we show that our gradient method can exactly recover the underlying subspace for any fixed fraction of outliers (less than 1). 
    more » « less
  5. null (Ed.)
    The goal of compressed sensing is to estimate a high dimensional vector from an underdetermined system of noisy linear equations. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the vector is represented by a deep generative model G:Rk→Rn. Classical recovery approaches such as empirical risk minimization (ERM) are guaranteed to succeed when the measurement matrix is sub-Gaussian. However, when the measurement matrix and measurements are heavy-tailed or have outliers, recovery may fail dramatically. In this paper we propose an algorithm inspired by the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy-tailed data, even in the presence of outliers. Theoretically, our results show our novel MOM-based algorithm enjoys the same sample complexity guarantees as ERM under sub-Gaussian assumptions. Our experiments validate both aspects of our claims: other algorithms are indeed fragile and fail under heavy-tailed and/or corrupted data, while our approach exhibits the predicted robustness. 
    more » « less