- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chi, Yuejie (3)
-
Shi, Laixi (2)
-
Li, Yuanxin (1)
-
Liang, Yingbin (1)
-
Zhang, Huishuai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shi, Laixi; Chi, Yuejie (, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP))
-
Li, Yuanxin; Chi, Yuejie; Zhang, Huishuai; Liang, Yingbin (, Sampling Theory and Applications (SampTA), 2017 International Conference on)Recent work has demonstrated the effectiveness of gradient descent for recovering low-rank matrices from random linear measurements in a globally convergent manner. However, their performance is highly sensitive in the presence of outliers that may take arbitrary values, which is common in practice. In this paper, we propose a truncated gradient descent algorithm to improve the robustness against outliers, where the truncation is performed to rule out the contributions from samples that deviate significantly from the sample median. A restricted isometry property regarding the sample median is introduced to provide a theoretical footing of the proposed algorithm for the Gaussian orthogonal ensemble. Extensive numerical experiments are provided to validate the superior performance of the proposed algorithm.more » « less