Augmented reality (AR), which overlays virtual content on top of the user’s perception of the real world, has now begun to enter the consumer market. Besides smartphone platforms, early-stage head-mounted displays such as the Microsoft HoloLens are under active development. Many compelling uses of these technologies are multi-user: e.g., inperson collaborative tools, multiplayer gaming, and telepresence. While prior work on AR security and privacy has studied potential risks from AR applications, new risks will also arise among multiple human users. In this work, we explore the challenges that arise in designing secure and private content sharing for multi-user AR. Wemore »
Securing Augmented Reality Output
Augmented reality (AR) technologies, such as Microsoft’s HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users
with immersive virtual experiences by capturing input from a user’s surroundings and overlaying virtual output on the user’s perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or
accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR
platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in
securing AR output.
- Award ID(s):
- 1651230
- Publication Date:
- NSF-PAR ID:
- 10048482
- Journal Name:
- Proceedings - IEEE Symposium on Security and Privacy
- ISSN:
- 1081-6011
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dini, Petre (Ed.)The National Academy of Engineering’s “Fourteen Grand Challenges for Engineering in the Twenty-First Century” identifies challenges in science and technology that are both feasible and sustainable to help people and the planet prosper. Four of these challenges are: advance personalized learning, enhance virtual reality, make solar energy affordable and provide access to clean water. In this work, the authors discuss developing of applications using immersive technologies, such as Virtual Reality (VR) and Augmented Reality (AR) and their significance in addressing four of the challenges. The Drinking Water AR mobile application helps users easily locate drinking water sources inside Auburn Universitymore »
-
This poster presents the use of Augmented Reality (AR) and Virtual Reality (VR) to tackle 4 amongst the “14 Grand Challenges for Engineering in the 21st Century” identified by National Academy of Engineering. AR and VR are the technologies of the present and the future. AR creates a composite view by adding digital content to a real world view, often by using the camera of a smartphone and VR creates an immersive view where the user’s view is often cut off from the real world. The 14 challenges identify areas of science and technology that are achievable and sustainable tomore »
-
Abstract Augmented reality (AR) devices, as smart glasses, enable users to see both the real world and virtual images simultaneously, contributing to an immersive experience in interactions and visualization. Recently, to reduce the size and weight of smart glasses, waveguides incorporating holographic optical elements in the form of advanced grating structures have been utilized to provide light-weight solutions instead of bulky helmet-type headsets. However current waveguide displays often have limited display resolution, efficiency and field-of-view, with complex multi-step fabrication processes of lower yield. In addition, current AR displays often have vergence-accommodation conflict in the augmented and virtual images, resulting inmore »
-
Securing applications on untrusted platforms can involve protection against legitimate end-users who act in the role of malicious reverse engineers and hackers. Such adversaries have access to the full execution environment of programs, whether the program comes in the form of software or hardware. In this paper, we consider the nature of obfuscating algorithms that perform iterative, step-wise transformation of programs into more complex forms that are intended to increase the complexity (time, resources) for malicious reverse engineers. We consider simple Boolean logic programs as the domain of interest and examine a specific transformation technique known as iterative sub-circuit selectionmore »