Augmented reality (AR) technologies, such as Microsoft’s HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user’s surroundings and overlaying virtual output on the user’s perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR outputmore »
Secure Multi-User Content Sharing for Augmented Reality Applications
Augmented reality (AR), which overlays virtual content on top of the user’s perception of the real world, has now begun to enter the consumer market. Besides smartphone platforms, early-stage head-mounted displays such as the Microsoft HoloLens are under active development. Many compelling uses of these technologies are multi-user: e.g., inperson collaborative tools, multiplayer gaming, and telepresence. While prior work on AR security and privacy has studied potential risks from AR applications, new risks will also arise among multiple human users. In this work, we explore the challenges that arise in designing secure and private content sharing for multi-user AR. We analyze representative application case studies and systematize design goals for security and functionality that a multi-user AR platform should support. We design an AR content sharing control module that achieves these goals and build a prototype implementation (ShareAR) for the HoloLens. This work builds foundations for secure and private multi-user AR interactions.
- Award ID(s):
- 1651230
- Publication Date:
- NSF-PAR ID:
- 10126914
- Journal Name:
- Proceedings of the USENIX Security Symposium
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Canteaut, Anne ; Standaert, Francois-Xavier (Ed.)Secure multi-party computation (MPC) allows multiple par-ties to perform secure joint computations on their private inputs. To-day, applications for MPC are growing with thousands of parties wish-ing to build federated machine learning models or trusted setups for blockchains. To address such scenarios we propose a suite of novel MPC protocols that maximize throughput when run with large numbers of parties. In particular, our protocols have both communication and computation complexity that decrease with the number of parties. Our protocols build on prior protocols based on packed secret-sharing, introducing new techniques to build more efficient computation for general circuits. Specifically, wemore »
-
Canteaut, Anne ; Standaert, Francois-Xavier (Ed.)Secure multi-party computation (MPC) allows multiple par-ties to perform secure joint computations on their private inputs. To-day, applications for MPC are growing with thousands of parties wish-ing to build federated machine learning models or trusted setups for blockchains. To address such scenarios we propose a suite of novel MPC protocols that maximize throughput when run with large numbers of parties. In particular, our protocols have both communication and computation complexity that decrease with the number of parties. Our protocols build on prior protocols based on packed secret-sharing, introducing new techniques to build more efficient computation for general circuits. Specifically, wemore »
-
We investigate the privacy practices of labor organizers in the computing technology industry and explore the changes in these practices as a response to remote work. Our study is situated at the intersection of two pivotal shifts in workplace dynamics: (a) the increase in online workplace communications due to remote work, and (b) the resurgence of the labor movement and an increase in collective action in workplaces— especially in the tech industry, where this phenomenon has been dubbed the tech worker movement. The shift of work-related communications to online digital platforms in response to an increase in remote work ismore »
-
Augmented Reality (AR) has become a valuable tool for education and training processes. Meanwhile, cloud-based technologies can foster collaboration and other interaction modalities to enhance learning. We combine the cloud capabilities with AR technologies to present Meta-AR-App, an authoring platform for collaborative AR, which enables authoring between instructors and students. Additionally, we introduce a new application of an established collaboration process, the pull-based development model, to enable sharing and retrieving of AR learning content. We customize this model and create two modalities of interaction for the classroom: local (student to student) and global (instructor to class) pull. Based on observationsmore »