skip to main content


Title: Argo: Architecture-aware graph partitioning
The increasing popularity and ubiquity of various large graph datasets has caused renewed interest for graph partitioning. Existing graph partitioners either scale poorly against large graphs or disregard the impact of the underlying hardware topology. A few solutions have shown that the nonuniform network communication costs may affect the performance greatly. However, none of them considers the impact of resource contention on the memory subsystems (e.g., LLC and Memory Controller) of modern multicore clusters. They all neglect the fact that the bandwidth of modern high-speed networks (e.g., Infiniband) has become comparable to that of the memory subsystems. In this paper, we provide an in-depth analysis, both theoretically and experimentally, on the contention issue for distributed workloads. We found that the slowdown caused by the contention can be as high as 11x. We then design an architecture-aware graph partitioner, ARGO , to allow the full use of all cores of multicore machines without suffering from either the contention or the communication heterogeneity issue. Our experimental study showed (1) the effectiveness of ARGO , achieving up to 12x speedups on three classic workloads: Breadth First Search, Single Source Shortest Path, and PageRank; and (2) the scalability of ARGO in terms of both graph size and the number of partitions on two billion-edge real-world graphs.  more » « less
Award ID(s):
1250171 1609120
NSF-PAR ID:
10048546
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2016 IEEE International Conference on Big Data
Page Range / eLocation ID:
284 to 293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern network-on-chip (NoC) hardware is an emerging target for side-channel security attacks. A recent work implemented and characterized timing-based software side-channel attacks that target NoC hardware on a real multicore machine. This article studies the impact of system noise on prior attack setups and shows that high noise is sufficient to defeat the attacker. We propose an information theory-based attack setup that uses repetition codes and differential signaling techniques to de-noise the unwanted noise from the NoC channel to successfully implement a practical covert-communication attack on a real multicore machine. The evaluation demonstrates an attack efficacy of 97%, 88%, and 78% under low, medium, and high external noise, respectively. Our attack characterization reveals that noise-based mitigation schemes are inadequate to prevent practical covert communication, and thus isolation-based mitigation schemes must be considered to ensure strong security. Isolation-based schemes are shown to mitigate timing-based side-channel attacks. However, their impact on the performance of real-world security critical workloads is not well understood in the literature. This article evaluates the performance implications of state-of-the-art spatial and temporal isolation schemes. The performance impact is shown to range from 2–3% for a set of graph and machine learning workloads, thus making isolation-based mitigations practical. 
    more » « less
  2. Research on transaction processing has made significant progress towards improving performance of main memory multicore OLTP systems under low contention. However, these systems struggle on workloads with lots of conflicts. Partitioned databases (and variants) perform well on high contention workloads that are statically partitionable, but time-varying workloads often make them impractical. To- wards addressing this, we propose Strife—a novel transac- tion processing scheme that clusters transactions together dynamically and executes most of them without any con- currency control. Strife executes transactions in batches, where each batch is partitioned into disjoint clusters with- out any cross-cluster conflicts and a small set of residuals. The clusters are then executed in parallel with no concur- rency control, followed by residuals separately executed with concurrency control. Strife uses a fast dynamic clustering al- gorithm that exploits a combination of random sampling and concurrent union-find data structure to partition the batch online, before executing it. Strife outperforms lock-based and optimistic protocols by up to 2× on high contention workloads. While Strife incurs about 50% overhead relative to partitioned systems in the statically partitionable case, it performs 2× better when such static partitioning is not possible and adapts to dynamically varying workloads. 
    more » « less
  3. Main-memory multicore transactional systems have achieved excellent performance using single-version optimistic concurrency control (OCC), especially on uncontended workloads. Nevertheless, systems based on other concurrency control protocols, such as hybrid OCC/ locking and variations on multiversion concurrency control (MVCC), are reported to outperform the best OCC systems, especially with increasing contention. This paper shows that implementation choices unrelated to concurrency control can explain some of these performance differences. Our evaluation shows the strengths and weaknesses of OCC, MVCC, and TicToc concurrency control under varying workloads and contention levels, and the importance of several implementation choices called basis factors. Given sensible basis factor choices, OCC performance does not collapse on high-contention TPC-C. We also present two optimization techniques, deferred updates and timestamp splitting, that can dramatically improve the high-contention performance of both OCC and MVCC. These techniques are known, but we apply them in a new context and highlight their potency: when combined, they lead to performance gains of 4.74× for MVCC and 5.01× for OCC in a TPC-C workload. 
    more » « less
  4. In this paper, we present RT-Gang: a novel realtime gang scheduling framework that enforces a one-gang-at-atime policy. We find that, in a multicore platform, co-scheduling multiple parallel real-time tasks would require highly pessimistic worst-case execution time (WCET) and schedulability analysis—even when there are enough cores—due to contention in shared hardware resources such as cache and DRAM controller. In RT-Gang, all threads of a parallel real-time task form a real-time gang and the scheduler globally enforces the one-gangat-a-time scheduling policy to guarantee tight and accurate task WCET. To minimize under-utilization, we integrate a state-of-the-art memory bandwidth throttling framework to allow safe execution of best-effort tasks. Specifically, any idle cores, if exist, are used to schedule best-effort tasks but their maximum memory bandwidth usages are strictly throttled to tightly bound interference to real-time gang tasks. We implement RT-Gang in the Linux kernel and evaluate it on two representative embedded multicore platforms using both synthetic and real-world DNN workloads. The results show that RT-Gang dramatically improves system predictability and the overhead is negligible. 
    more » « less
  5. Transactional memory has been receiving much attention from both academia and industry. In transactional memory, program code is split into transactions, blocks of code that appear to execute atomically. Transactions are executed speculatively and the speculative execution is supported through data versioning mechanism. Lazy versioning makes aborts fast but penalizes commits, whereas eager versioning makes commits fast but penalizes aborts. However, whether to use eager or lazy versioning to execute those transactions is still a hotly debated topic. Lazy versioning seems appropriate for write-dominated workloads and transactions in high contention scenarios whereas eager versioning seems appropriate for read-dominated workloads and transactions in low contention scenarios. This necessitates a priori knowledge on the workload and contention scenario to select an appropriate versioning method to achieve better performance. In this article, we present an adaptive versioning approach, called Adaptive, that dynamically switches between eager and lazy versioning at runtime, without the need of a priori knowledge on the workload and contention scenario but based on appropriate system parameters, so that the performance of a transactional memory system is always better than that is obtained using either eager or lazy versioning individually. We provide Adaptive for both persistent and non-persistent transactional memory systems using performance parameters appropriate for those systems. We implemented our adaptive versioning approach in the latest software transactional memory distribution TinySTM and extensively evaluated it through 5 micro-benchmarks and 8 complex benchmarks from STAMP and STAMPEDE suites. The results show significant benefits of our approach. Specifically, in persistent TM systems, our approach achieved performance improvements as much as 1.5× for execution time and as much as 240× for number of aborts, whereas our approach achieved performance improvements as much as 6.3× for execution time and as much as 170× for number of aborts in non-persistent transactional memory systems. 
    more » « less