There has been a growing interest in the graph-streaming setting where a continuous stream of graph updates is mixed with graph queries. In principle, purely-functional trees are an ideal fit for this setting as they enable safe parallelism, lightweight snapshots, and strict serializability for queries. However, directly using them for graph processing leads to significant space overhead and poor cache locality. This paper presents C-trees, a compressed purely-functional search tree data structure that significantly improves on the space usage and locality of purely-functional trees. We design theoretically-efficient and practical algorithms for performing batch updates to C-trees, and also show that we can store massive dynamic real-world graphs using only a few bytes per edge, thereby achieving space usage close to that of the best static graph processing frameworks. To study the applicability of our data structure, we designed Aspen, a graph-streaming framework that extends the interface of Ligra with operations for updating graphs. We show that Aspen is faster than two state-of-the-art graph-streaming systems, Stinger and LLAMA, while requiring less memory, and is competitive in performance with the state-of-the-art static graph frameworks, Galois, GAP, and Ligra+. With Aspen, we are able to efficiently process the largest publicly-available graph with over two hundred billion edges in the graph-streaming setting using a single commodity multicore server with 1TB of memory.
more »
« less
Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable
There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the interfaces, optimizations, and graph processing techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph Based Benchmark Suite (GBBS).
more »
« less
- Award ID(s):
- 1910030
- PAR ID:
- 10252239
- Date Published:
- Journal Name:
- ACM Transactions on Parallel Computing
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2329-4949
- Page Range / eLocation ID:
- 1 to 70
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While there has been significant work on parallel graph processing, there has been very surprisingly little work on high-performance hypergraph processing. This paper presents a collection of efficient parallel algorithms for hypergraph processing, including algorithms for betweenness centrality, maximal independent set, k-core decomposition, hypertrees, hyperpaths, connected components, PageRank, and single-source shortest paths. For these problems, we either provide new parallel algorithms or more efficient implementations than prior work. Furthermore, our algorithms are theoretically-efficient in terms of work and depth. To implement our algorithms, we extend the Ligra graph processing framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between sparse and dense traversals based on the frontier size, edge-aware parallelization, using buckets to prioritize processing of vertices, and compression. Our experiments on a 72-core machine and show that our algorithms obtain excellent parallel speedups, and are significantly faster than algorithms in existing hypergraph processing frameworks.more » « less
-
Community detection plays a central role in uncovering meso scale structures in networks. However, existing methods often suffer from disconnected or weakly connected clusters, undermining interpretability and robustness. Well-Connected Clusters (WCC) and Connectivity Modifier (CM) algorithms are post-processing techniques that improve the accuracy of many clustering methods. However, they are computationally prohibitive on massive graphs. In this work, we present optimized parallel implementations of WCC and CM using the HPE Chapel programming language. First, we design fast and efficient parallel algorithms that leverage Chapel’s parallel constructs to achieve substantial performance improvements and scalability on modern multicore architectures. Second, we integrate this software into Arkouda/Arachne, an open-source, high-performance framework for large-scale graph analytics. Our implementations uniquely enable well-connected community detection on massive graphs with more than 2 billion edges, providing a practical solution for connectivity-preserving clustering at web scale. For example, our implementations of WCC and CM enable community detection of the over 2-billion edge Open-Alex dataset in minutes using 128 cores, a result infeasible to compute previously.more » « less
-
Due to the emergence of massive real-world graphs, whose sizes may extend to terabytes, new tools must be developed to enable data scientists to handle such graphs efficiently. These graphs may include social networks, computer networks, and genomes. In this paper, we propose a novel graph package, Arachne, to make large-scale graph analytics more effortless and efficient based on the open-source Arkouda framework. Arkouda has been developed to allow users to perform massively parallel computations on distributed data with an interface similar to NumPy. In this package, we developed a fundamental sparse graph data structure and then built several useful graph algorithms around our data structure to form a basic algorithmic library. Benchmarks and tools were also developed to evaluate and demonstrate the use of our graph algorithms. The graph algorithms we have implemented thus far include breadth-first search (BFS), connected components (CC), k-Truss (KT), Jaccard coefficients (JC), triangle counting (TC), and triangle centrality (TCE). Their corresponding experimental results based on realworld and synthetic graphs are presented. Arachne is organized as an Arkouda extension package and is publicly available on GitHub (https://github.com/Bears-R-Us/arkouda-njit).more » « less
-
Computing strongly connected components (SCC) is among the most fundamental problems in graph analytics. Given the large size of today's real-world graphs, parallel SCC implementation is increasingly important. SCC is challenging in the parallel setting and is particularly hard on large-diameter graphs. Many existing parallel SCC implementations can be even slower than Tarjan's sequential algorithm on large-diameter graphs. To tackle this challenge, we propose an efficient parallel SCC implementation using a new parallel reachability approach. Our solution is based on a novel idea referred to as vertical granularity control (VGC). It breaks the synchronization barriers to increase parallelism and hide scheduling overhead. To use VGC in our SCC algorithm, we also design an efficient data structure called the parallel hash bag. It uses parallel dynamic resizing to avoid redundant work in maintaining frontiers (vertices processed in a round). We implement the parallel SCC algorithm by Blelloch et al. (J. ACM, 2020) using our new parallel reachability approach. We compare our implementation to the state-of-the-art systems, including GBBS, iSpan, Multi-step, and our highly optimized Tarjan's (sequential) algorithm, on 18 graphs, including social, web, k-NN, and lattice graphs. On a machine with 96 cores, our implementation is the fastest on 16 out of 18 graphs. On average (geometric means) over all graphs, our SCC is 6.0× faster than the best previous parallel code (GBBS), 12.8× faster than Tarjan's sequential algorithms, and 2.7× faster than the best existing implementation on each graph. We believe that our techniques are of independent interest. We also apply our parallel hash bag and VGC scheme to other graph problems, including connectivity and least-element lists (LE-lists). Our implementations improve the performance of the state-of-the-art parallel implementations for these two problems.more » « less
An official website of the United States government

