The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water.
more »
« less
Metal–Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting
Amongst many strategies for renewable energy conversion, light-driven water splitting to produce clean H2 represents a promising approach and has attracted increasing attention in recent years. Owing to the multi-electron/multi-proton transfer nature of water splitting, low-cost and competent catalysts are needed. Along the rapid development of metal–organic frameworks (MOFs) during the last two decades or so, MOFs have been recognized as an interesting group of catalysts or catalyst supports for photocatalytic water splitting. The modular synthesis, intrinsically high surface area, tunable porosity, and diverse metal nodes and organic struts of MOFs render them excellent catalyst candidates for photocatalytic water splitting. To date, the application of MOFs and their derivatives as photocatalysts for water splitting has become a burgeoning field. Herein, we showcase several representative MOF-based photocatalytic systems for both H2 and O2 evolution reactions (HER, OER). The design principle of each catalytic system is specifically discussed. The current challenges and opportunities of utilizing MOFs for photocatalytic water splitting are discussed in the end.
more »
« less
- Award ID(s):
- 1653978
- PAR ID:
- 10048622
- Date Published:
- Journal Name:
- Inorganics
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2304-6740
- Page Range / eLocation ID:
- 40
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The field of sustainable heterogeneous catalysis is evolving rapidly, with a strong emphasis on developing catalysts that enhance efficiency. Among various heterogeneous photocatalysts, metal‐organic frameworks (MOFs) have gained significant attention for their exceptional performance in photocatalytic reactions. In this context, contrary to the conventional homogeneous iridium or ruthenium‐based photocatalysts, which face significant challenges in terms of availability, cost, scalability, and recyclability, a new Ba/Ti MOF (ACM‐4) is developed as a heterogeneous catalyst that can mimic/outperform the conventional photocatalysts, offering a more sustainable solution for efficient chemical processes. Its redox potential and triplet energy are comparable to or higher than the conventional catalysts, organic dyes, and metal semiconductors, enabling its use in both electron transfer and energy transfer applications. It facilitates a broad range of coupling reactions involving pharmaceuticals, agrochemicals, and natural products, and is compatible with various transition metals such as nickel, copper, cobalt, and palladium as co‐catalysts. The effectiveness of theACM‐4as a photocatalyst is supported by comprehensive material studies, photophysical, and recycling experiments. These significant findings underscore the potential ofACM‐4as a highly versatile and cost‐effective photoredox catalyst, providing a sustainable, one‐material solution for efficient chemical processes.more » « less
-
Abstract Metal‐Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL‐142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+(tpy = 2,2′:6′,2″‐terpyridine and Qc = 8‐quinolinecarboxylate)‐doped Fe MIL‐142 achieved a high photocurrent (1.6 × 10−3A·cm−2) in photo‐electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2evolution is also reported with Pt as the co‐catalyst (4.8 µmol g−1min−1). The high activity of this new system enables hydrogen gas capture from an easy‐to‐manufacture, scaled‐up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF‐based light‐driven water‐splitting assemblies utilizing a minimal amount of precious metals and Fe‐based photosensitizers.more » « less
-
Abstract The structural advantages of metal‐organic frameworks (MOFs) can facilitate wide applications in the field of catalysis, including oxidation, hydrogenation, acetalization, transesterification, catalytic cracking, and so on. The efficiency of catalysis is closely related to the synergy between active center, auxiliary center, and microenvironment. Researchers can customize MOFs according to the needs of catalytic reactions, and many strategies were established for boosting catalytic performance. In this review, we aim to summarize and illustrate recent progress in the nanospace engineering of MOFs. Generally, MOFs were engineered mainly from the following aspects: 1) Regulation of pore size, including micropores, mesopores, and macropores. 2) Engineering of encapsulated active species, such as metal nanoparticles, quantum dots, polyoxometalates, enzymes, etc. 3) Engineering of MOFs morphology from zero dimension to three‐dimension. 4) Controllable integration of MOFs with multi‐strategies. 5) Construction of multivariate MOFs via introducing multiple or mixed organic functional groups into the existing framework. Besides, for further low cost and practical applications, challenges for MOFs as green and sustainable catalysts are also discussed.more » « less
-
null (Ed.)Electrochemical water splitting produces clean hydrogen fuel as one of the pivotal alternative energies to fossil fuels in the near future. However, the anodic oxygen evolution reaction (OER) is a significant bottleneck that curtails large-scale applications of electrochemical water splitting technology, owing to its sluggish reaction kinetics. In the past few decades, various methods have been proposed to improve the OER kinetics. Among them, doping is a simple and efficient method to mold the OER kinetics of a catalyst by incorporating different or hetero atoms into the host lattice. These efforts are vital to design highly efficient OER catalysts for real-world applications. However, the OER mechanism of a doped catalyst varies, depending on the host lattice and the dopant. This review highlights different doping strategies and associated OER mechanisms of state-of-the-art catalysts, including oxides (noble metal oxides, perovskite oxides, spinel oxides, hydroxides and others), non-oxides (metal sulfides, metal selenides, metal phosphides, metal nitrides and metal carbides), and carbon-based catalysts (graphene, carbon nanotubes and others). Fundamental understanding of the doping effects on the OER from combined experimental and theoretical research provides guidelines for designing efficient catalysts.more » « less