skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Tree-Structured CP-Nets with Local Search
Conditional preference networks (CP-nets) are an intuitive and expressive representation for qualitative preferences. Such models must somehow be acquired. Psychologists argue that direct elicitation is suspect. On the other hand, learning general CP-nets from pairwise comparisons is NP-hard, and --- for some notions of learning --- this extends even to the simplest forms of CP-nets. We introduce a novel, concise encoding of binary-valued, tree-structured CP-nets that supports the first local-search-based CP-net learning algorithms. While exact learning of binary-valued, tree-structured CP-nets --- for a strict, entailment-based notion of learning --- is already in P, our algorithm is the first space-efficient learning algorithm that gracefully handles noisy (i.e., realistic) comparison sets.  more » « less
Award ID(s):
1215985
PAR ID:
10048704
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ... International Florida Artificial Intelligence Research Society Conference
ISSN:
2334-0762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The generation of preferences represented as CP-nets for experiments and empirical testing has typically been done in an ad hoc manner that may have introduced a large statistical bias in previous experimental work. We present novel polynomial-time algorithms for generating CP-nets with n nodes and maximum in-degree c uniformly at random. We extend this result to several statistical cultures commonly used in the social choice and preference reasoning literature. A CP-net is composed of both a graph and underlying cp-statements; our algorithm is the first to provably generate both the graph structure and cp-statements, and hence the underlying preference orders themselves, uniformly at random. We have released this code as a free and open source project. We use the uniform generation algorithm to investigate the maximum and expected flipping lengths, i.e., the maximum length over all outcomes o1 and o2, of a minimal proof that o1 is preferred to o2. Using our new statistical evidence, we conjecture that, for CP-nets with binary variables and complete conditional preference tables, the expected flipping length is polynomial in the number of preference variables. This has positive implications for the usability of CP-nets as compact preference models. 
    more » « less
  2. We develop optimal algorithms for learning undirected Gaussian trees and directed Gaussian polytrees from data. We consider both problems of distribution learning (i.e. in KL distance) and structure learning (i.e. exact recovery). The first approach is based on the Chow-Liu algorithm, and learns an optimal tree-structured distribution efficiently. The second approach is a modification of the PC algorithm for polytrees that uses partial correlation as a conditional independence tester for constraint-based structure learning. We derive explicit finite-sample guarantees for both approaches, and show that both approaches are optimal by deriving matching lower bounds. Additionally, we conduct numerical experiments to compare the performance of various algorithms, providing further insights and empirical evidence. 
    more » « less
  3. We show that Cutting Planes (CP) proofs are hard to find: Given an unsatisfiable formula F, It is -hard to find a CP refutation of F in time polynomial in the length of the shortest such refutation; and unless Gap-Hitting-Set admits a nontrivial algorithm, one cannot find a tree-like CP refutation of F in time polynomial in the length of the shortest such refutation. The first result extends the recent breakthrough of Atserias and M'uller (FOCS 2019) that established an analogous result for Resolution. Our proofs rely on two new lifting theorems: (1) Dag-like lifting for gadgets with many output bits. (2) Tree-like lifting that simulates an r-round protocol with gadgets of query complexity O(r). 
    more » « less
  4. Data augmentation is widely used for training a neural network given little labeled data. A common practice of augmentation training is applying a composition of multiple transformations sequentially to the data. Existing augmentation methods such as RandAugment randomly sample from a list of pre-selected transformations, while methods such as AutoAugment apply advanced search to optimize over an augmentation set of size $k^d$, which is the number of transformation sequences of length $$d$$, given a list of $$k$$ transformations. In this paper, we design efficient algorithms whose running time complexity is much faster than the worst-case complexity of $O(k^d)$, provably. We propose a new algorithm to search for a binary tree-structured composition of $$k$$ transformations, where each tree node corresponds to one transformation. The binary tree generalizes sequential augmentations, such as the SimCLR augmentation scheme for contrastive learning. Using a top-down, recursive search procedure, our algorithm achieves a runtime complexity of $O(2^d k)$, which is much faster than $O(k^d)$ as $$k$$ increases above $$2$$. We apply our algorithm to tackle data distributions with heterogeneous subpopulations by searching for one tree in each subpopulation and then learning a weighted combination, resulting in a \emph{forest} of trees. We validate our proposed algorithms on numerous graph and image datasets, including a multi-label graph classification dataset we collected. The dataset exhibits significant variations in the sizes of graphs and their average degrees, making it ideal for studying data augmentation. We show that our approach can reduce the computation cost by 43% over existing search methods while improving performance by 4.3%. The tree structures can be used to interpret the relative importance of each transformation, such as identifying the important transformations on small vs. large graphs. 
    more » « less
  5. We consider the problem of simulating a k-valued register in a wait- free manner using binary registers as building blocks, where k > 2. We show that for any simulation using atomic binary base registers to simulate a safe k-valued register in which the read algorithm takes the optimal number of steps (log_2 k), the write algorithm must take at least log k steps in the worst case. A fortiori, the same lower bound applies when the simulated register should be regular. Previously known algorithms show that both these lower bounds are tight. We also show that in order to simulate an atomic k -valued register for two readers, the optimal number of steps for the read algorithm must be strictly larger than log_2 k. 
    more » « less