skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1215985

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conditional preference networks (CP-nets) are an intuitive and expressive representation for qualitative preferences. Such models must somehow be acquired. Psychologists argue that direct elicitation is suspect. On the other hand, learning general CP-nets from pairwise comparisons is NP-hard, and --- for some notions of learning --- this extends even to the simplest forms of CP-nets. We introduce a novel, concise encoding of binary-valued, tree-structured CP-nets that supports the first local-search-based CP-net learning algorithms. While exact learning of binary-valued, tree-structured CP-nets --- for a strict, entailment-based notion of learning --- is already in P, our algorithm is the first space-efficient learning algorithm that gracefully handles noisy (i.e., realistic) comparison sets. 
    more » « less