skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application-Specific Graph Sampling for Frequent Subgraph Mining and Community Detection
Graph mining is an important data analysis methodology, but struggles as the input graph size increases. The scalability and usability challenges posed by such large graphs make it imperative to sample the input graph and reduce its size. The critical challenge in sampling is to identify the appropriate algorithm to insure the resulting analysis does not suffer heavily from the data reduction. Predicting the expected performance degradation for a given graph and sampling algorithm is also useful. In this paper, we present different sampling approaches for graph mining applications such as Frequent Subgrpah Mining (FSM), and Community Detection (CD). We explore graph metrics such as PageRank, Triangles, and Diversity to sample a graph and conclude that for heterogeneous graphs Triangles and Diversity perform better than degree based metrics. We also present two new sampling variations for targeted graph mining applications. We present empirical results to show that knowledge of the target application, along with input graph properties can be used to select the best sampling algorithm. We also conclude that performance degradation is an abrupt, rather than gradual phenomena, as the sample size decreases. We present the empirical results to show that the performance degradation follows a logistic function.  more » « less
Award ID(s):
1646640
PAR ID:
10048864
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Big Data
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pattern counting in graphs is a fundamental primitive for many network analysis tasks, and there are several methods for scaling subgraph counting to large graphs. Many real-world networks have a notion of strength of connection between nodes, which is often modeled by a weighted graph, but existing scalable algorithms for pattern mining are designed for unweighted graphs. Here, we develop deterministic and random sampling algorithms that enable the fast discovery of the 3-cliques (triangles) of largest weight, as measured by the generalized mean of the triangle’s edge weights. For example, one of our proposed algorithms can find the top-1000 weighted triangles of a weighted graph with billions of edges in thirty seconds on a commodity server, which is orders of magnitude faster than existing “fast” enumeration schemes. Our methods open the door towards scalable pattern mining in weighted graphs. 
    more » « less
  2. Large-scale graph machine learning is challenging as the complexity of learning models scales with the graph size. Subsampling the graph is a viable alternative, but sampling on graphs is nontrivial as graphs are non-Euclidean. Existing graph sampling techniques require not only computing the spectra of large matrices but also repeating these computations when the graph changes, e.g., grows. In this pa- per, we introduce a signal sampling theory for a type of graph limit—the graphon. We prove a Poincare ́ inequality for graphon signals and show that complements of node subsets satisfying this inequality are unique sampling sets for Paley-Wiener spaces of graphon signals. Exploiting connections with spectral clustering and Gaussian elimination, we prove that such sampling sets are consistent in the sense that unique sampling sets on a convergent graph sequence converge to unique sampling sets on the graphon. We then propose a related graphon signal sampling algorithm for large graphs, and demonstrate its good empirical performance on graph machine learning tasks. 
    more » « less
  3. Abstract Statistical relational learning (SRL) and graph neural networks (GNNs) are two powerful approaches for learning and inference over graphs. Typically, they are evaluated in terms of simple metrics such as accuracy over individual node labels. Complexaggregate graph queries(AGQ) involving multiple nodes, edges, and labels are common in the graph mining community and are used to estimate important network properties such as social cohesion and influence. While graph mining algorithms support AGQs, they typically do not take into account uncertainty, or when they do, make simplifying assumptions and do not build full probabilistic models. In this paper, we examine the performance of SRL and GNNs on AGQs over graphs with partially observed node labels. We show that, not surprisingly, inferring the unobserved node labels as a first step and then evaluating the queries on the fully observed graph can lead to sub-optimal estimates, and that a better approach is to compute these queries as an expectation under the joint distribution. We propose a sampling framework to tractably compute the expected values of AGQs. Motivated by the analysis of subgroup cohesion in social networks, we propose a suite of AGQs that estimate the community structure in graphs. In our empirical evaluation, we show that by estimating these queries as an expectation, SRL-based approaches yield up to a 50-fold reduction in average error when compared to existing GNN-based approaches. 
    more » « less
  4. In many applications of graph processing, the input data is often generated from an underlying geometric point data set. However, existing high-performance graph processing frameworks assume that the input data is given as a graph. Therefore, to use these frameworks, the user must write or use external programs based on computational geometry algorithms to convert their point data set to a graph, which requires more programming effort and can also lead to performance degradation. In this paper, we present our ongoing work on the Geo- Graph framework for shared-memory multicore machines, which seamlessly supports routines for parallel geometric graph construction and parallel graph processing within the same environment. GeoGraph supports graph construction based on k-nearest neighbors, Delaunay triangulation, and b-skeleton graphs. It can then pass these generated graphs to over 25 graph algorithms. GeoGraph contains highperformance parallel primitives and algorithms implemented in C++, and includes a Python interface. We present four examples of using GeoGraph, and some experimental results showing good parallel speedups and improvements over the Higra library. We conclude with a vision of future directions for research in bridging graph and geometric data processing. 
    more » « less
  5. One of the most common problems studied in the context of differential privacy for graph data is counting the number of non-induced embeddings of a subgraph in a given graph. These counts have very high global sensitivity. Therefore, adding noise based on powerful alternative techniques, such as smooth sensitivity and higher-order local sensitivity have been shown to give significantly better accuracy. However, all these alternatives to global sensitivity become computationally very expensive, and to date efficient polynomial time algorithms are known only for few selected subgraphs, such as triangles, k-triangles, and k-stars. In this paper, we show that good approximations to these sensitivity metrics can be still used to get private algorithms. Using this approach, we much faster algorithms for privately counting the number of triangles in real-world social networks, which can be easily parallelized. We also give a private polynomial time algorithm for counting any constant size subgraph using less noise than the global sensitivity; we show this can be improved significantly for counting paths in special classes of graphs. 
    more » « less