We studied numerically external stimuli enforced annihilation of a pair of daughter nematic topological defect (TD) assemblies bearing a relatively strong topological charge |m|=3/2. A Landau- de Gennes phenomenological approach in terms of tensor nematic order parameter was used in an effectively two-dimensional Cartesian coordinate system, where spatial variations along the z-axis were neglected. A pair of {m=3/2,m=−3/2} was enforced by an appropriate surface anchoring field, mimicking an experimental sample realization using the atomic force microscope (AFM) scribing method. Furthermore, defects were confined within a rectangular boundary that imposes strong tangential anchoring. This setup enabled complex and counter-intuitive annihilation processes on varying relevant parameters. We present two qualitatively different annihilation paths, where we either gradually reduced the relative surface anchoring field importance or increased an external in-plane spatially homogeneous electric field E. The creation and depinning of additional defect pairs {12,−12} mediated the annihilation in such a geometry. Furthermore, we illustrate the absorption of TDs by sharp edges of the confining boundary, accompanied by m=±1/4↔∓1/4 winding reversal of edge singularities, and also E-driven zero-dimensional to one-dimensional defect core transformation.
more »
« less
Geometry and external field positionally controlled nematic topological defects
Using a Landau–de Gennes approach, we study the impact of confinement topology, geometry and external fields on spatial positioning of nematic topological defects (TDs). In quasi two-dimensional systems we demonstrate that confinement enforced total topological charge m>>1 decays into elementary TDs bearing charge m=1/2. These assemble close to the bounding substrate to enable essentially bulk-like uniform nematic ordering in the central part of a system. This effect is reminiscent of the Faraday cavity phenomenon in electrostatics. We observe that in certain confinement geometries, varying the order parameter correlation length size could trigger global rotation of an assembly of TDs. Finally, we show that an external electric field could be used to drag the boojum finger tip towards a confinement cell interior. Assemblies of TDs could be exploited as traps for appropriate nanoparticles, opening several opportunities for development of functional nanodevices.
more »
« less
- Award ID(s):
- 1505389
- PAR ID:
- 10048963
- Date Published:
- Journal Name:
- Beilstein journal of nanotechnology
- ISSN:
- 2190-4286
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.more » « less
-
We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines. Published by the American Physical Society2024more » « less
-
We study decomposition of geometrically enforced nematic topological defects bearing relatively large defect strengths m in effectively two-dimensional planar systems. Theoretically, defect cores are analyzed within the mesoscopic Landau - De Gennes approach in terms of the tensor nematic order parameter. We demonstrate a robust tendency of defect decomposition into elementary units where two qualitatively different scenarios imposing total defect strengths to a nematic region are employed. Some theoretical predictions are verified experimentally, where arrays of defects bearing charges m = ±1, and even m = ±2, are enforced within a plane-parallel nematic cell using an AFM scribing method.more » « less
-
Active nematic liquid crystals have the remarkable ability to spontaneously deform and flow in the absence of any external driving force. While living materials with orientational order, such as the mitotic spindle, can self-assemble in quiescent active phases, reconstituted active systems often display chaotic, periodic, or circulating flows under confinement. Quiescent active nematics are, therefore, quite rare, despite the prediction from active hydrodynamic theory that confinement between two parallel plates can suppress flows. This spontaneous flow transition—named the active Fréedericksz transition by analogy with the conventional Fréedericksz transition in passive nematic liquid crystals under a magnetic field—has been a cornerstone of the field of active matter. Here, we report experimental evidence that confinement in spherical droplets can stabilize the otherwise chaotic dynamics of a 3D extensile active nematics, giving rise to a quiescent—yet still out-of-equilibrium—nematic liquid crystal. The active nematics spontaneously flow when confined in larger droplets. The composite nature of our model system composed of extensile bundles of microtubules and molecular motors dispersed in a passive colloidal liquid crystal allows us to demonstrate how the interplay of activity, nematic elasticity, and confinement impacts the spontaneous flow transition. The critical diameter increases when motor concentration decreases or nematic elasticity increases. Experiments and simulations also demonstrate that the critical confinement depends on the confining geometry, with the critical diameter in droplets being larger than the critical width in channels. Biochemical assays reveal that neither confinement nor nematic elasticity impacts the energy-consumption rate, confirming that the quiescent active phase is the stable out-of-equilibrium phase predicted theoretically. Further experiments in dense arrays of monodisperse droplets show that fluctuations in the droplet composition can smooth the flow transition close to the critical diameter. In conclusion, our work provides experimental validation of the active Fréedericksz transition in 3D active nematics, with potential applications in human health, ecology, and soft robotics. Published by the American Physical Society2024more » « less
An official website of the United States government

