skip to main content


Title: Annihilation of Highly-Charged Topological Defects
We studied numerically external stimuli enforced annihilation of a pair of daughter nematic topological defect (TD) assemblies bearing a relatively strong topological charge |m|=3/2. A Landau- de Gennes phenomenological approach in terms of tensor nematic order parameter was used in an effectively two-dimensional Cartesian coordinate system, where spatial variations along the z-axis were neglected. A pair of {m=3/2,m=−3/2} was enforced by an appropriate surface anchoring field, mimicking an experimental sample realization using the atomic force microscope (AFM) scribing method. Furthermore, defects were confined within a rectangular boundary that imposes strong tangential anchoring. This setup enabled complex and counter-intuitive annihilation processes on varying relevant parameters. We present two qualitatively different annihilation paths, where we either gradually reduced the relative surface anchoring field importance or increased an external in-plane spatially homogeneous electric field E. The creation and depinning of additional defect pairs {12,−12} mediated the annihilation in such a geometry. Furthermore, we illustrate the absorption of TDs by sharp edges of the confining boundary, accompanied by m=±1/4↔∓1/4 winding reversal of edge singularities, and also E-driven zero-dimensional to one-dimensional defect core transformation.  more » « less
Award ID(s):
1901797
NSF-PAR ID:
10339160
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
10
Issue:
8
ISSN:
2073-4352
Page Range / eLocation ID:
673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study decomposition of geometrically enforced nematic topological defects bearing relatively large defect strengths m in effectively two-dimensional planar systems. Theoretically, defect cores are analyzed within the mesoscopic Landau - De Gennes approach in terms of the tensor nematic order parameter. We demonstrate a robust tendency of defect decomposition into elementary units where two qualitatively different scenarios imposing total defect strengths to a nematic region are employed. Some theoretical predictions are verified experimentally, where arrays of defects bearing charges m = ±1, and even m = ±2, are enforced within a plane-parallel nematic cell using an AFM scribing method. 
    more » « less
  2. Topological defects are a ubiquitous phenomenon across different physical systems. A better understanding of defects can be helpful in elucidating the physical behaviors of many real materials systems. In nematic liquid crystals, defects exhibit unique optical signatures and can segregate impurities, showing their promise as molecular carriers and nano-reactors. Continuum theory and simulations have been successfully applied to link static and dynamical behaviors of topological defects to the material constants of the underlying nematic. However, further evidence and molecular details are still lacking. Here we perform molecular dynamics simulations of Gay–Berne particles, a model nematic, to examine the molecular structures and dynamics of +1/2 defects in a thin-film nematic. Specifically, we measure the bend-to-splay ratio K 3 / K 1 using two independent, indirect measurements, showing good agreement. Next, we study the annihilation event of a pair of ±1/2 defects, of which the trajectories are consistent with experiments and hydrodynamic simulations. We further examine the thermodynamics of defect annihilation in an NVE ensemble, leading us to correctly estimate the elastic modulus by using the energy conservation law. Finally, we explore effects of defect annihilation in regions of nonuniform temperature within these coarse-grained molecular models which cannot be analysed by existing continuum level simulations. We find that +1/2 defects tend to move toward hotter areas and their change of speed in a temperature gradient can be quantitatively understood through a term derived from the temperature dependence of the elastic modulus. As such, our work has provided molecular insights into structures and dynamics of topological defects, presented unique and accessible methods to measure elastic constants by inspecting defects, and proposed an alternative control parameter of defects using temperature gradient. 
    more » « less
  3. A patterned surface defect of strength m = +1 and its associated disclination lines can decompose into a pair of surface defects and disclination lines of strength m = +1/2. For a negative dielectric anisotropy liquid crystal subjected to an applied ac electric field E , these half-integer defects are observed to wobble azimuthally for E > than some threshold field and, for sufficiently large fields, to co-revolve antipodally around a central point approximately midway between the two defects. This behavior is elucidated experimentally as a function of applied field strength E and frequency ν , where the threshold field for full co-revolution scales as ν 1/2 . Concurrently, nematic electrohydrodynamic instabilities were investigated. A complete field vs. frequency “phase diagram” compellingly suggests that the induced fluctuations and eventual co-revolutions of the ordinarily static defects are coupled strongly to—and driven by—the presence of the hydrodynamic instability. The observed behaviour suggests a Lehmann-like mechanism that drives the co-revolution. 
    more » « less
  4. Using a Landau–de Gennes approach, we study the impact of confinement topology, geometry and external fields on spatial positioning of nematic topological defects (TDs). In quasi two-dimensional systems we demonstrate that confinement enforced total topological charge m>>1 decays into elementary TDs bearing charge m=1/2. These assemble close to the bounding substrate to enable essentially bulk-like uniform nematic ordering in the central part of a system. This effect is reminiscent of the Faraday cavity phenomenon in electrostatics. We observe that in certain confinement geometries, varying the order parameter correlation length size could trigger global rotation of an assembly of TDs. Finally, we show that an external electric field could be used to drag the boojum finger tip towards a confinement cell interior. Assemblies of TDs could be exploited as traps for appropriate nanoparticles, opening several opportunities for development of functional nanodevices. 
    more » « less
  5. Abstract The proposal of fault-tolerant quantum computations, which promise to dramatically improve the operation of quantum computers and to accelerate the development of the compact hardware for them, is based on topological quantum field theories, which rely on the existence in Nature of physical systems described by a Lagrangian containing a non-Abelian (NA) topological term. These are solid-state systems having two-dimensional electrons, which are coupled to magnetic-flux-quanta vortexes, forming complex particles, known as anyons. Topological quantum computing (TQC) operations thus represent a physical realization of the mathematical operations involving NA representations of a braid group B n , generated by a set of n localized anyons, which can be braided and fused using a “tweezer” and controlled by a detector. For most of the potential TQC material systems known so far, which are 2D-electron–gas semiconductor structure at high magnetic field and a variety of hybrid superconductor/topological-material heterostructures, the realization of anyon localization versus tweezing and detecting meets serious obstacles, chief among which are the necessity of using current control, i.e., mobile particles, of the TQC operations and high density electron puddles (containing thousands of electrons) to generate a single vortex. Here we demonstrate a novel system, in which these obstacles can be overcome, and in which vortexes are generated by a single electron. This is a ~ 150 nm size many electron InP/GaInP 2 self-organized quantum dot, in which molecules, consisting of a few localized anyons, are naturally formed and exist at zero external magnetic field. We used high-spatial-resolution scanning magneto-photoluminescence spectroscopy measurements of a set of the dots having five and six electrons, together with many-body quantum mechanical calculations to demonstrate spontaneous formation of the anyon magneto-electron particles ( e ν ) having fractional charge ν  =  n / k, where n  = 1–4 and k  = 3–15 are the number of electrons and vortexes, respectively, arranged in molecular structures having a built-in (internal) magnetic field of 6–12 T. Using direct imaging of the molecular configurations we observed fusion and braiding of e ν - anyons under photo-excitation and revealed the possibility of using charge sensing for their control. Our investigations show that InP/GaInP 2 anyon-molecule QDs, which have intrinsic transformations of localized e ν - anyons compatible with TQC operations and capable of being probed by charge sensing, are very promising for the realization of TQC. 
    more » « less