skip to main content


Title: NUWBS: Non-Uniform Wavelet Bandpass Sampling for Compressive RF Feature Acquisition
Feature extraction from wideband radio-frequency (RF) signals, such as spectral activity, interferer energy and type, or direction- of-arrival, finds use in a growing number of applications. Compressive sensing (CS)-based analog-to-information (A2I) converters enable the design of inexpensive and energy-efficient wideband RF sensing solutions for such applications. However, most A2I architectures suffer from a variety of real-world impairments. We propose a novel A2I architecture, referred to as non-uniform wavelet bandpass sampling (NUWBS). Our architecture extracts a carefully-tuned subset of wavelet coefficients directly in the RF domain, which mitigates the main issues of most existing A2I converters. We use simulations to show that NUWBS approaches the performance limits of l1-norm-based sparse signal recovery.  more » « less
Award ID(s):
1652065
NSF-PAR ID:
10049099
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Signal Processing with Adaptive Sparse Structured Representations (SPARS) workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Feature extraction, such as spectral occupancy, interferer energy and type, or direction-of-arrival, from wideband radio-frequency (RF) signals finds use in a growing number of applications as it enhances RF transceivers with cognitive abilities and enables parameter tuning of traditional RF chains. In power and cost limited applications, e.g., for sensor nodes in the Internet of Things, wideband RF feature extraction with conventional, Nyquist-rate analog-to-digital converters is infeasible. However, the structure of many RF features (such as signal sparsity) enables the use of compressive sensing (CS) techniques that acquire such signals at sub-Nyquist rates; while such CS-based analog-to-information (A2I) converters have the potential to enable low-cost and energy-efficient wideband RF sensing, they suffer from a variety of real-world limitations, such as noise folding, low sensitivity, aliasing, and limited flexibility. This paper proposes a novel CS-based A2I architecture called non-uniform wavelet sampling. Our solution extracts a carefully-selected subset of wavelet coefficients directly in the RF domain, which mitigates the main issues of existing A2I converter architectures. For multi-band RF signals, we propose a specialized variant called non-uniform wavelet bandpass sampling (NUWBS), which further improves sensitivity and reduces hardware complexity by leveraging the multi-band signal structure. We use simulations to demonstrate that NUWBS approaches the theoretical performance limits of ℓ₁-norm-based sparse signal recovery. We investigate hardware-design aspects and show ASIC measurement results for the wavelet generation stage, which highlight the efficacy of NUWBS for a broad range of RF feature extraction tasks in cost- and power-limited applications. 
    more » « less
  2. Waleed Khalil (Ed.)
    The increasing performance demanded by emerging wireless communication standards motivates the development of various techniques devoted to improving the efficiency of power amplifiers (PA) because this is one of the most power-demanding blocks in RF transceivers. Power-amplifier efficiency is proportional to the ratio of the average voltage delivered by the PA to the voltage level of the PA's power supply. Efficiency is affected by the peak-to-average ratio of the transmitted signal. The envelope tracking modulator maximizes this ratio, correlating the PA's power supply with the envelope of its output signal. Efficient modulators must satisfy certain critical conditions: i) it must be very agile to track the amplitude variations of PA's output voltage; ii) it must reduce the timing mismatch between the PA modulator's supply and PA output waveform envelope to optimize power efficiency and avoid PA saturation, and iii) the envelope tracking modulator must be highly power efficient. This paper reviews several relevant envelope tracking techniques. Hybrid modulators consisting of switching regulators and linear amplifiers have become mainstream envelope tracking systems for wideband applications, in which linear amplifiers complement the functionality of highly efficient but narrow bandwidth switching modulators. Replacements for linear amplifiers include a combination of power-efficient ADC and DACs that provide very agile feedback, increasing the system's slew rate, which allows the modulator to track faster envelope signals. Multi-level switching is another relevant approach utilizing multiple switching voltages to reduce current ripples and enable the use of wider bandwidth switching regulators with high power efficiency. The use of multiple inductors is another interesting approach. Multi-phase switching techniques utilize multiple switching stages in a time-interleaved manner to extend the switching modulator's bandwidth. A slow buck converter can be combined with a fast buck converter and optimized for different switching frequencies; this architecture covers the signal envelope's low- and high-frequency components. The approaches mentioned use switching modulators with analog feedback controllers (Pulse-width modulation [PWM] or hysteretic). However, an alternative approach is prediction-based digital feedforward control. This tutorial discusses all of these approaches. 
    more » « less
  3. Convolutional Neural Networks (CNNs), due to their recent successes, have gained lots of attention in various vision-based applications. They have proven to produce incredible results, especially on big data, that require high processing demands. However, CNN processing demands have limited their usage in embedded edge devices with constrained energy budgets and hardware. This paper proposes an efficient new architecture, namely Ocelli includes a ternary compute pixel (TCP) consisting of a CMOS-based pixel and a compute add-on. The proposed Ocelli architecture offers several features; (I) Because of the compute add-on, TCPs can produce ternary values (i.e., −1, 0, +1) regarding the light intensity as pixels’ inputs; (II) Ocelli realizes analog convolutions enabling low-precision ternary weight neural networks. Since the first layer’s convolution operations are the performance bottleneck of accelerators, Ocelli mitigates the overhead of analog buffers and analog-to-digital converters. Moreover, our design supports a zero-skipping scheme to further power reduction; (III) Ocelli exploits non-volatile magnetic RAMs to store CNN’s weights, which remarkably reduces the static power consumption; and finally, (IV) Ocelli has two modes, including sensing and processing. Once the object is detected, the architecture switches to the typical sensing mode to capture the image. Compared to the conventional pixels, it achieves an average 10% efficiency on its lane detection power consumption compared with existing edge detection algorithms. Moreover, considering different CNN workloads, our design shows more than 23% power efficiency over conventional designs, while it can achieve better accuracy. 
    more » « less
  4. Passive Remote Sensing services are indispensable in modern society because of the applications related to climate studies and earth science. Among those, NASA’s Soil Moisture Active and Passive (SMAP) mission provides an essential climate variable such as the moisture content of the soil by using microwave radiation within protected band over 1400-1427 MHz. However, because of the increasing active wireless technologies such as Internet of Things (IoT), unmanned aerial vehicles (UAV), and 5G wireless communication, the SMAP’s passive observations are expected to experience an increasing number of Radio Frequency Interference (RFI). RFI is a well-documented issue and SMAP has a ground processing unit dedicated to tackling this issue. However, advanced techniques are needed to tackle the increasing RFI problem for passive sensing systems and to jointly coexist communication and sensing systems. In this paper, we apply a deep learning approach where a novel Convolutional Neural Network (CNN) architecture for both RFI detection and mitigation is employed. SMAP Level 1A spectrogram of antenna counts and various moments data are used as the inputs to the deep learning architecture. We simulate different types of RFI sources such as pulsed, CW or wideband anthropogenic signals. We then use artificially corrupted SMAP Level 1B antenna measurements in conjunction with RFI labels to train the learning architecture. While the learned detection network classifies input spectrograms as RFI or no-RFI cases, the mitigation network reconstructs the RFI mitigated antenna temperature images. The proposed learning framework both takes advantage of the existing SMAP data and the simulated RFI scenarios. Future remote sensing systems such as radiometers will suffer an increasing RFI problem and spectrum sharing and techniques that will allow coexistance of sensing and communication systems will be utmost importance for both parties. RFI detection and mitigation will remain a prerequisite for these radiometers and the proposed deep learning approach has the potential to provide an additional perspective to existing solutions. We will present detailed analysis on the selected deep learning architecture, obtained RFI detection accuracy levels and RFI mitigation performance. 
    more » « less
  5. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less