skip to main content


Title: Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report
The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession’s ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be “champions for diversity” and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants’ actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants’ understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants’ responses during the simulations. Follow-up activities include monthly online meetings to engage problem solving and strategy-building skills for catalyzing institutional culture change within departments. This talk will specifically focus on workshop observations and preliminary reactions to the training.  more » « less
Award ID(s):
1645314
NSF-PAR ID:
10049750
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American Geophysical Union
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. https://peer.asee.org/27950 This paper presents results of work completed on our project, Intersectionality of Non-normative Identities in the Cultures of Engineering (InIce). The overarching focus of this project is on how students who hold non-normative identities position themselves, grow through their education, and navigate the cultures of engineering they experience in college. Our goal is to investigate ways to engage students who hold non-normative identities to become more active and lifelong participants in engineering disciplines. Our work is proceeding in three phases: 1) Identify, through a quantitative instrument, the attitudinal profiles of normative and non-normative students in engineering; 2) Characterize students’ normative and non-normative identities through in-depth interviews and analysis of differences between students with normative and non-normative identities in engineering; and 3) Drawing from our findings, develop a workshop and set of courses to incorporate diversity topics into engineering programs to enhance the culture of engineering to be more responsive towards, and inclusive of, a diverse range of student identities. We have completed the first phase of the project in which we quantitatively measured and characterized student groups with normative and non-normative identities in engineering. Our definitions of normative and non-normative for this project are developed through Topological Data Analysis (TDA) of a set of multi-institution survey data (n = 2916). TDA allows identification of groups without imposing a priori hypotheses on how the attitudes of students may group together (nor how they may distinguish between demographic groups). This approach allows the underlying structure of the data to emerge rather than imposing pre-defined definitions of normative attitudes or identities. Our TDA results revealed one group that contains a relatively large number of students (the “normative” group) and a total of seven other distinct, but relatively populated, groups (the “non-normative” groups). We have compiled a summary of the most salient attitudinal constructs in terms of characterizing and distinguishing between all these groups including: motivation (value, goal orientation, future time perspective), engineering and physics identities (performance/competence and recognition beliefs for each), personality traits (neuroticism, extraversion, belongingness) and grit (consistency of interest). We are currently in Phase 2 of our study in which we are conducting a series of qualitative, longitudinal interviews with students selected from normative and non-normative groups to understand how they navigate their engineering experiences and define their educational trajectories over the first two years of college. This data will be deductively analyzed based on our existing attitudinal frameworks as well as inductively coded for emerging themes on how students feel belongingness within engineering culture. This project promises to move traditional measures of demographic data beyond socially constructed perceptions of others and allows for the representation of student diversity from the perspective of each participant. This more accurate reflection of diversity provides novel insight into the experiences of students who might otherwise be ignored or unjustifiably lumped in with other students with whom they share some demographic indicator and how residing at the intersection of multiple measures of diversity can influence students’ experiences in engineering culture. 
    more » « less
  2. N/A (Ed.)
    In 2019, women made up about half of the U.S. workforce but only 27% of the science, technology, engineering and math (STEM) workforce, according to the U.S. Census Bureau. Women pursuing careers in STEM workforces often face gender bias, discrimination, and harassment, yet seldom receive instruction on how to best handle such issues. The National Science Foundation-funded NAVIGATE Project aims to address this situation by providing women STEM graduate students with educational materials on how to recognize and confront discrimination, both interpersonally and organizationally. The skills-based program uses a case study approach, which promotes the internalization of learning and the development of analytical and decision-making skills, as well as proficiency in oral communication and teamwork. Each case study is coupled with discussion questions for individual and group reflection, as well as a complete facilitation guide with possible answers for those leading the training, to promote meaningful engagement with the material. The NAVIGATE facilitators will lead workshop participants through this novel case study approach to supporting the career persistence by women in STEM. The session will include research on the role change agents play in retaining women in STEM. It will also give participants opportunities to work collectively to strategize on how to impart graduate students with the skills necessary to (1) recognize gender bias, harassment and discrimination when encountered, and (2) act to overcome career adversity created by gender bias, harassment, and discrimination to persist in their STEM careers and become transformational leaders in their fields. 
    more » « less
  3. Abstract

    In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students’ decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part and parcel with computer programming, possibly threatening a student's sense of belonging in engineering. The majority of the participants reported that their computational identity was “in the making.” Students’ responses also suggested that their engineering identity and their computational identity were in congruence, while some incongruence is found between their engineering identity and a creative identity as well as between computational identity and perceived feminine norms. Responses also indicate that students associate specific skills with having a computational identity. This study's findings present an emergent thematic definition of a computational person constructed from student perceptions and experiences. Instructors can support students’ nascent computational identities through intentional mitigation of the gender stereotypes and biases, and by framing assignments to focus on developing specific skills associated with the computational modeling processes.

     
    more » « less
  4. Kirgiz, Mehmet Serkan (Ed.)
    Interdisciplinary research is the synergistic combination of two or more disciplines to achieve one research objective. Current research highlights the importance of interdisciplinary research in science education, particularly between educational experts within a particular science discipline (discipline-based education researchers) and those who study human learning in a more general sense (learning scientists). However, this type of interdisciplinary research is not common and little empirical evidence exists that identifies barriers and possible solutions. We hosted a pre-conference workshop for Discipline-Based Educational Researchers and Learning Scientists designed to support interdisciplinary collaborations. We collected evidence during our workshop regarding barriers to interdisciplinary collaborations in science education, perceptions of perceived cohesion in participants’ home university departments and professional communities, and the impact of our workshop on fostering new connections. Based on participants’ responses, we identified three categories of barriers, Disciplinary Differences , Professional Integration , and Collaborative Practice . Using a post-conference survey, we found an inverse pattern in perceived cohesion to home departments compared to self-identified professional communities. Additionally, we found that after the workshop participants reported increased connections across disciplines. Our results provide empirical evidence regarding challenges to interdisciplinary research in science education and suggest that small professional development workshops have the potential for facilitating durable interdisciplinary networks where participants feel a sense of belonging not always available in their home departments. 
    more » « less
  5. This research paper describes a study designed to help inform STEM faculty hiring practices at institutions of higher education in the U.S., where over the past two decades, diversity statements have become more popular components of application packages for faculty jobs. The purpose is to explore the ways and extent to which diversity statements are utilized in evaluating faculty applicants. The research questions are: (1) To what extent do universities equip search committees to evaluate applicants’ diversity statements? (2) What are STEM faculty’s perspectives of diversity statements in job applications? This paper is derived from a larger two-phase sequential mixed methods study examining the factors current faculty members and administrators consider important when hiring new STEM faculty. During the first phase, we deployed a nationwide survey to STEM faculty members and administrators who have been involved in faculty searches, with 151 of 216 respondents answering questions specific to diversity statements. About 29% of survey respondents indicated their departments required diversity statements; 59% indicated their institutions did not provide guidance for evaluating them. The second phase was a phenomenological study involving interviews of 25 survey respondents. Preliminary analyses of interview data indicated that a little more than half (52%) of participants’ departments required a diversity statement. Of the departments that required diversity statements, a little more than half used a rubric for evaluation, whether as part of a larger holistic rubric, or as a standalone rubric. For some departments that did not require diversity statements, applicants were required to discuss diversity within their other application materials. Regarding faculty members’ perceptions of diversity statements, some felt that diversity statements were necessary to assess candidates’ beliefs and experiences. Some noted that when diversity is discussed as part of another document and is not required as a stand-alone statement, it feels like the candidate “slaps on a paragraph” about diversity. Others viewed diversity statements as a “bump” that gives candidates “bonus points.” A few faculty felt that diversity statements were “redundant,” and if applicants were passionate about diversity, they would organically discuss it in the other required documents. Many shared frustrations regarding the requirement and evaluation practices. Most participants indicated their postings provided applicants with little to no guidance on what search committees were looking for in submitted diversity statements; they felt it would be beneficial for both the search committee and the applicants to have this guidance. Shared through a traditional lecture, results from this study may be used to help inform strategies for recruiting faculty who are committed to diversity - and ideally, equity and inclusion - and for addressing equity in faculty hiring. 
    more » « less