Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes (< 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification.
more »
« less
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively
more »
« less
- Award ID(s):
- 1760523
- PAR ID:
- 10050486
- Date Published:
- Journal Name:
- Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
- Page Range / eLocation ID:
- 2979 - 2989
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Einhäuser, Wolfgang (Ed.)Responses to natural stimuli in area V4—a mid-level area of the visual ventral stream—are well predicted by features from convolutional neural networks (CNNs) trained on image classification. This result has been taken as evidence for the functional role of V4 in object classification. However, we currently do not know if and to what extent V4 plays a role in solving other computational objectives. Here, we investigated normative accounts of V4 (and V1 for comparison) by predicting macaque single-neuron responses to natural images from the representations extracted by 23 CNNs trained on different computer vision tasks including semantic, geometric, 2D, and 3D types of tasks. We found that V4 was best predicted by semantic classification features and exhibited high task selectivity, while the choice of task was less consequential to V1 performance. Consistent with traditional characterizations of V4 function that show its high-dimensional tuning to various 2D and 3D stimulus directions, we found that diverse non-semantic tasks explained aspects of V4 function that are not captured by individual semantic tasks. Nevertheless, jointly considering the features of a pair of semantic classification tasks was sufficient to yield one of our top V4 models, solidifying V4’s main functional role in semantic processing and suggesting that V4’s selectivity to 2D or 3D stimulus properties found by electrophysiologists can result from semantic functional goals.more » « less
-
Fine-tuning pre-trained language models is a common practice in building NLP models for various tasks, including the case with less supervision. We argue that under the few-shot setting, formulating fine-tuning closer to the pre-training objective shall be able to unleash more benefits from the pre-trained language models. In this work, we take few-shot named entity recognition (NER) for a pilot study, where existing fine-tuning strategies are much different from pre-training. We propose a novel few-shot fine-tuning framework for NER, FFF-NER. Specifically, we introduce three new types of tokens, “is-entity”, “which-type” and “bracket”, so we can formulate the NER fine-tuning as (masked) token prediction or generation, depending on the choice of the pre-training objective. In our experiments, we apply to fine-tune both BERT and BART for few-shot NER on several benchmark datasets and observe significant improvements over existing fine-tuning strategies, including sequence labeling, prototype meta-learning, and prompt-based approaches. We further perform a series of ablation studies, showing few-shot NER performance is strongly correlated with the similarity between fine-tuning and pre-training.more » « less
-
Deep neural networks are popular for visual perception tasks such as image classification and object detection. Once trained and deployed in a real-time environment, these models struggle to identify novel inputs not initially represented in the training distribution. Further, they cannot be easily updated on new information or they will catastrophically forget previously learned knowledge. While there has been much interest in developing models capable of overcoming forgetting, most research has focused on incrementally learning from common image classification datasets broken up into large batches. Online streaming learning is a more realistic paradigm where a model must learn one sample at a time from temporally correlated data streams. Although there are a few datasets designed specifically for this protocol, most have limitations such as few classes or poor image quality. In this work, we introduce Stream-51, a new dataset for streaming classification consisting of temporally correlated images from 51 distinct object categories and additional evaluation classes outside of the training distribution to test novelty recognition. We establish unique evaluation protocols, experimental metrics, and baselines for our dataset in the streaming paradigm.more » « less
-
Peng, Hanchuan (Ed.)Motivation:Deep learning models have achieved remarkable success in a wide range of natural-world tasks, such as vision, language, and speech recognition. These accomplishments are largely attributed to the availability of open-source large-scale datasets. More importantly, pre-trained foundational model learnings exhibit a surprising degree of transferability to downstream tasks, enabling efficient learning even with limited training examples. However, the application of such natural-domain models to the domain of tiny Cryo-Electron Tomography (Cryo-ET) images has been a relatively unexplored frontier. This research is motivated by the intuition that 3D Cryo-ET voxel data can be conceptually viewed as a sequence of progressively evolving video frames. Results: Leveraging the above insight, we propose a novel approach that involves the utilization of 3D models pre-trained on large-scale video datasets to enhance Cryo-ET subtomogram classification. Our experiments, conducted on both simulated and real Cryo-ET datasets, reveal compelling results. The use of video initialization not only demonstrates improvements in classification accuracy but also substantially reduces training costs. Further analyses provide additional evidence of the value of video initialization in enhancing subtomogram feature extraction. Additionally, we observe that video initialization yields similar positive effects when applied to medical 3D classification tasks, underscoring the potential of cross-domain knowledge transfer from video-based models to advance the state-of-the-art in a wide range of biological and medical data types.Availability and implementation: https://github.com/xulabs/aitom.more » « less
An official website of the United States government

