skip to main content


Title: Characterization of the Slow Molecular Dynamics of Poly( l ‐Lactic Acid) in α and α′ Phases, in a Glassy State, and in a Complex with Poly( d ‐Lactic Acid) by Solid‐State NMR
Abstract

Recently, slow molecular dynamics of poly(l‐lactic acid) (PLLA) by using 1D and 2D exchange NMR are investigated. In this work, slow molecular dynamics of PLLA chains in the α′, a stereocomplex (SC) with poly(d‐lactic acid), and glassy states are investigated in terms of centerband‐only detection of exchange (CODEX) NMR. The mixing‐time dependence of the CODEX data demonstrates that the molecular dynamics of stems become slower in the order of α′, α, and SC. The temperature dependence of the correlation time 〈τc〉 of the helical jump motions in the α and SC phases simply exhibits Arrhenius behaviors, with activation energy,Ea, values of 91 ± 1 and 97 ± 1 kJ mol−1, respectively. In contrast, the temperature dependence of 〈τc〉 in the α′ sample exhibits two Arrhenius lines with substantially differentEavalues of 273 ± 12 and 16 ± 14 kJ mol−1at temperatures below and above 84 °C. The obtained kinetics of molecular dynamics not only establish the relationship between packing structure and dynamics in PLLA polymorphs and in the SC, but also allow for an understanding of the coupled dynamics between the crystalline and amorphous regions at approximatelyTg.

 
more » « less
Award ID(s):
1708999
NSF-PAR ID:
10051084
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
219
Issue:
3
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Poly(lactic acid) (PLA) is a commercially available bio‐based polymer that is a potential alternative to many commodity petrochemical‐based polymers. However, PLA's thermomechanical properties limit its use in many applications. Incorporating polymer‐grafted cellulose nanocrystals (CNCs) is one potential route to improving these mechanical properties. One key challenge in using these polymer‐grafted nanoparticles is to understand which variables associated with polymer grafting are most important for improving composite properties. In this work, poly(ethylene glycol)‐grafted CNCs are used to study the effects of polymer grafting density and molecular weight on the properties of PLA composites. All CNC nanofillers are found to reinforce PLA above the glass transition temperature, but non‐grafted CNCs and CNCs grafted with short PEG chains (<2 kg mol−1) are found to cause significant embrittlement, generally resulting in less than 3% elongation‐at‐break. By grafting higher molecular weight PEG (10 kg mol−1) onto the CNCs at a grafting density where the polymer chains are predicted to be in the semi‐dilute polymer brush conformation (~0.1 chains nm−2), embrittlement can be avoided.

     
    more » « less
  2. Abstract

    The effects of annealing time and molecular weight on the strong melt memory effect observed in random ethylene 1‐alkene copolymers are analyzed in a series of model ethylene 1‐butene copolymers with 2.2 mol% branches. Melt memory is associated with molten clusters of ethylene sequences from the initial crystals that remain in close proximity and are unable to diffuse quickly to the randomized melt state, thus increasing the recrystallization rate. Melt memory persists even for greater than 1000 min annealing indicating a long‐lived nature of the clusters that only fully dissolve at melt temperatures above a critical value (>160 °C). Below the critical melt temperature, molecular weight and annealing temperature have a strong influence on the slow kinetics of melt memory. For the copolymers analyzed, slow dissolution of clusters is experimentally observed only forMw < 50 000 g mol−1. More stable clusters that survive higher annealing temperatures display slower dissolution rates than clusters remaining at lower temperatures. The threshold crystallinity level to enable melt memory (Xc,threshold) decreases with increasing molecular weight and decreasing annealing temperature similarly to the variation of the chain diffusivity in the melt. The process leading to melt memory is thermally activated as the variation ofXc,thresholdwith temperature follows Arrhenius behavior with high activation energy (ca108 kJ mol−1) that is independent of molecular weight. © 2018 Society of Chemical Industry

     
    more » « less
  3. ABSTRACT

    This work addresses a systematic study for the process development and optimization of poly(d,l‐lactic acid) (PDLLA) submicrometer fibers utilizing the centrifugal spinning technique known as Forcespinning. This study analyzes the effect of polymer concentration (8, 10, and 12 wt %) and angular speed on the fiber morphology, diameter distribution, and fiber yield. The increase in polymer concentration and angular speed favored the formation of continuous and homogeneous submicrometer fibers with an absence of bead formation and higher output. The optimal conditions were established considering the morphological characteristics that exhibit a greater surface area (homogeneous and submicrometer fibers); and they were achieved at a polymer concentration of 10 wt % at an angular speed ranging from 8000 to 10 000 rpm. Optimization of PDLLA submicrometer fiber fabrication lays the groundwork for scaling up the process and serves as a platform to further develop promising applications of PDLLA nonwoven mats, particularly in the biomedical area such as in scaffolds for tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47643.

     
    more » « less
  4. Abstract

    Incorporating catechols into polymers can provide strong adhesion even in moist environments, and these polymers show promise for use in several biomedical applications. Surgical adhesives must have strong bonds, be biocompatible, and function in a moist environment. Poly(lactic acid) (PLA) has a long history as a biocompatible material for hard tissue device fixation. By combining these concepts, catechol‐containing poly(lactic acid) (cPLA) polymers are created that are strongly adhesive and degrade in physiological environments. Here, we evaluated the cytocompatibility of cPLA with iron(III) or periodate (IO4) cross‐linkers. Fibroblasts cultured in cPLA leachate or on cPLA films generally had slower growth and lower metabolism compared with PLA controls but no differences in viability. These results demonstrated that cPLA was not cytotoxic but that including catechols reduced cell health. When cPLA was cross‐linked with periodate, cells generally had reduced metabolism, slower cell growth, and poor actin fiber formation compared with PLA. These results are attributed to the cytotoxicity of periodate since cells cultured with periodate leachate had extremely low viability. Cells grown on the films of iron‐cross‐linked cPLA generally had high viability and metabolism but slower proliferation than PLA controls. These results indicate that the cPLA and iron‐cross‐linked cPLA systems are promising materials for biomedical adhesive applications.

     
    more » « less
  5. Abstract

    Bacterial infection of implanted biomaterials is a serious problem that increases health care costs and negatively affects a considerable fraction of orthopedic procedures. In this field, magnesium oxide nanoparticles (MgO NPs) have emerged as a promising material to combat bacterial infection while maintaining or improving bone cell functions. Here, MgO NPs were electrophoretically deposited onto poly‐L‐lactic acid (PLLA) sheets to achieve a coating of highly exposed MgO NPs that directly influenced cell‐substrate interactions at short time scales. Samples were characterized for their surface chemistry, crystal structure, roughness, wettability, degradation characteristics, and their ability to support the growth of human fibroblasts and osteoblasts, as well as their resistance to colonization byStaphylococcus aureus,Staphylococcus epidermidis, andPseudomonas aeruginosa. In general, increasing the applied voltage during deposition increased the surface coverage of the coating and significantly decreased the colonization of all three bacterial strains (up to a 90% reduction). Furthermore,S. aureuscells that did attach onto substrates prepared at high voltages exhibited trademark signs of membrane damage and cell death. Importantly, MTS cell viability assays indicated that osteoblast adhesion increased with increasing deposition voltage, while fibroblast adhesion exhibited the opposite trend. Thus, although requiring more studies, this research provides the first evidence that MgO NP coatings prepared at relatively high voltages (120–150 V) may have the ability to resist bacterial colonization, promote bone cell attachment, and curb fibrous capsule formation. Therefore, it is recommended that this technology be further investigated and developed for numerous orthopedic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3136–3147, 2017.

     
    more » « less