skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PlantCV v2: Image analysis software for high-throughput plant phenotyping
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.  more » « less
Award ID(s):
1355406
PAR ID:
10052010
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
5
ISSN:
2167-8359
Page Range / eLocation ID:
e4088
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Key message Advances in deep learning are providing a powerful set of image analysis tools that are readily accessible for high-throughput phenotyping applications in plant reproductive biology. High-throughput phenotyping systems are becoming critical for answering biological questions on a large scale. These systems have historically relied on traditional computer vision techniques. However, neural networks and specifically deep learning are rapidly becoming more powerful and easier to implement. Here, we examine how deep learning can drive phenotyping systems and be used to answer fundamental questions in reproductive biology. We describe previous applications of deep learning in the plant sciences, provide general recommendations for applying these methods to the study of plant reproduction, and present a case study in maize ear phenotyping. Finally, we highlight several examples where deep learning has enabled research that was previously out of reach and discuss the future outlook of these methods. 
    more » « less
  2. Abstract BackgroundMaize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision–based tools. FindingsA set of maize inbreds—primarily recently off patent lines—were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. ConclusionsCorrelations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. 
    more » « less
  3. Raza, Mudassar (Ed.)
    Cosegmentation is a newly emerging computer vision technique used to segment an object from the background by processing multiple images at the same time. Traditional plant phenotyping analysis uses thresholding segmentation methods which result in high segmentation accuracy. Although there are proposed machine learning and deep learning algorithms for plant segmentation, predictions rely on the specific features being present in the training set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical to better understand and predict plants’ responses to the environment. High-throughput phenotyping produces an abundance of data that can be leveraged to improve segmentation accuracy and plant phenotyping. This paper introduces four datasets consisting of two plant species, Buckwheat and Sunflower, each split into control and drought conditions. Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 temporal images that are collected in a high-throughput facility at the University of Nebraska-Lincoln. The four datasets (which will be collected under the CosegPP data repository in this paper) are evaluated using three cosegmentation algorithms: Markov random fields-based, Clustering-based, and Deep learning-based cosegmentation, and one commonly used segmentation approach in plant phenotyping. The integration of CosegPP with advanced cosegmentation methods will be the latest benchmark in comparing segmentation accuracy and finding areas of improvement for cosegmentation methodology. 
    more » « less
  4. Over the last decade, the use of unmanned aerial vehicles (UAVs) for plant phenotyping and field crop monitoring has significantly evolved and expanded. These technologies have been particularly valuable for monitoring crop growth and health and for managing abiotic and biotic stresses such as drought, fertilization deficiencies, disease, and bioaggressors. This paper provides a comprehensive review of the progress in UAV‐based plant phenotyping, with a focus on the current use and application of drone technology to gain information on plant growth, development, adaptation, and yield. We reviewed over 200 research articles and discuss the best tools and methodologies for different research purposes, the challenges that need to be overcome, and the major research gaps that remain. First, the review offers a critical focus on elucidating the distinct characteristics of UAV platforms, highlighting the diverse sensor technologies employed and shedding light on the nuances of UAV data acquisition and processing methodologies. Second, it presents a comprehensive analysis of the multiple applications of UAVs in field phenotyping, underscoring the transformative potential of integrating machine learning techniques for plant analysis. Third, it delves into the realm of machine learning applications for plant phenotyping, emphasizing its role in enhancing data analysis and interpretation. Furthermore, the paper extensively examines the open issues and research challenges within the domain, addressing the complexities and limitations faced during data acquisition, processing, and interpretation. Finally, it outlines the future trends and emerging technologies in the field of UAV‐based plant phenotyping, paving the way for innovative advancements and methodologies. 
    more » « less
  5. Maize (Zea mays L.) is one of the three major cereal crops in the world. Leaf angle is an important architectural trait of crops due to its substantial role in light interception by the canopy and hence photosynthetic efficiency. Traditionally, leaf angle has been measured using a protractor, a process that is both slow and laborious. Efficiently measuring leaf angle under field conditions via imaging is challenging due to leaf density in the canopy and the resulting occlusions. However, advances in imaging technologies and machine learning have provided new tools for image acquisition and analysis that could be used to characterize leaf angle using three-dimensional (3D) models of field-grown plants. In this study, PhenoBot 3.0, a robotic vehicle designed to traverse between pairs of agronomically spaced rows of crops, was equipped with multiple tiers of PhenoStereo cameras to capture side-view images of maize plants in the field. PhenoStereo is a customized stereo camera module with integrated strobe lighting for high-speed stereoscopic image acquisition under variable outdoor lighting conditions. An automated image processing pipeline (AngleNet) was developed to measure leaf angles of nonoccluded leaves. In this pipeline, a novel representation form of leaf angle as a triplet of keypoints was proposed. The pipeline employs convolutional neural networks to detect each leaf angle in two-dimensional images and 3D modeling approaches to extract quantitative data from reconstructed models. Our study demonstrates the feasibility of using stereo vision to investigate the distribution of leaf angles in maize under field conditions. The proposed system is an efficient alternative to traditional leaf angle phenotyping and thus could accelerate breeding for improved plant architecture. 
    more » « less