skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Face Sketch Matching via Coupled Deep Transform Learning
Face sketch to digital image matching is an important challenge of face recognition that involves matching across different domains. Current research efforts have primarily focused on extracting domain invariant representations or learning a mapping from one domain to the other. In this research, we propose a novel transform learning based approach termed as DeepTransformer, which learns a transformation and mapping function between the features of two domains. The proposed formulation is independent of the input information and can be applied with any existing learned or hand-crafted feature. Since the mapping function is directional in nature, we propose two variants of DeepTransformer: (i) semi-coupled and (ii) symmetricallycoupled deep transform learning. This research also uses a novel IIIT-D Composite Sketch with Age (CSA) variations database which contains sketch images of 150 subjects along with age-separated digital photos. The performance of the proposed models is evaluated on a novel application of sketch-to-sketch matching, along with sketch-to-digital photo matching. Experimental results demonstrate the robustness of the proposed models in comparison to existing state-of-the-art sketch matching algorithms and a commercial face recognition system.  more » « less
Award ID(s):
1650474 1066197
PAR ID:
10053777
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Joint Conference on Biometrics (IJCB)
Page Range / eLocation ID:
5429 to 5438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, face recognition systems have achieved exceptional success due to promising advances in deep learning architectures. However, they still fail to achieve the expected accuracy when matching profile images against a gallery of frontal images. Current approaches either perform pose normalization (i.e., frontalization) or disentangle pose information for face recognition. We instead propose a new approach to utilize pose as auxiliary information via an attention mechanism. In this paper, we hypothesize that pose-attended information using an attention mechanism can guide contextual and distinctive feature extraction from profile faces, which further benefits better representation learning in an embedded domain. To achieve this, first, we design a unified coupled profile-to-frontal face recognition network. It learns the mapping from faces to a compact embedding subspace via a class-specific contrastive loss. Second, we develop a novel pose attention block (PAB) to specially guide the pose-agnostic feature extraction from profile faces. To be more specific, PAB is designed to explicitly help the network to focus on important features along both “channel” and “spatial” dimensions while learning discriminative yet pose-invariant features in an embedding subspace. To validate the effectiveness of our proposed method, we conduct experiments on both controlled and in the- wild benchmarks including Multi-PIE, CFP, and IJB-C, and show superiority over the state-of-the-art. 
    more » « less
  2. Forensic application of automatically matching skull with face images is an important research area linking biometrics with practical applications in forensics. It is an opportunity for biometrics and face recognition researchers to help the law enforcement and forensic experts in giving an identity to unidentified human skulls. It is an extremely challenging problem which is further exacerbated due to lack of any publicly available database related to this problem. This is the first research in this direction with a twofold contribution: (i) introducing the first of its kind skullface image pair database, IdentifyMe, and (ii) presenting a preliminary approach using the proposed semi-supervised formulation of transform learning. The experimental results and comparison with existing algorithms showcase the challenging nature of the problem. We assert that the availability of the database will inspire researchers to build sophisticated skull-to-face matching algorithms. 
    more » « less
  3. null (Ed.)
    Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose {\it OptiMapper}, a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69%$ utilization of the datasets for clustering with an overall clustering accuracy of 87.5%. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5% improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data. 
    more » « less
  4. Face recognition with wearable items has been a challenging task in computer vision and involves the problem of identifying humans wearing a face mask. Masked face analysis via multi-task learning could effectively improve performance in many fields of face analysis. In this paper, we propose a unified framework for predicting the age, gender, and emotions of people wearing face masks. We first construct FGNET-MASK, a masked face dataset for the problem. Then, we propose a multi-task deep learning model to tackle the problem. In particular, the multi-task deep learning model takes the data as inputs and shares their weight to yield predictions of age, expression, and gender for the masked face. Through extensive experiments, the proposed framework has been found to provide a better performance than other existing methods. 
    more » « less
  5. Facial recognition technology is becoming increasingly ubiquitous nowadays. Facial recognition systems rely upon large amounts of facial image data. This raises serious privacy concerns since storing this facial data securely is challenging given the constant risk of data breaches or hacking. This paper proposes a privacy-preserving face recognition and verification system that works without compromising the user’s privacy. It utilizes sensor measurements captured by a lensless camera - FlatCam. These sensor measurements are visually unintelligible, preserving the user’s privacy. Our solution works without the knowledge of the camera sensor’s Point Spread Function and does not require image reconstruction at any stage. In order to perform face recognition without information on face images, we propose a Discrete Cosine Transform (DCT) domain sensor measurement learning scheme that can recognize faces without revealing face images. We compute a frequency domain representation by computing the DCT of the sensor measurement at multiple resolutions and then splitting the result into multiple subbands. The network trained using this DCT representation results in huge accuracy gains compared to the accuracy obtained after directly training with sensor measurement. In addition, we further enhance the security of the system by introducing pseudo-random noise at random DCT coefficient locations as a secret key in the proposed DCT representation. It is virtually impossible to recover the face images from the DCT representation without the knowledge of the camera parameters and the noise locations. We evaluated the proposed system on a real lensless camera dataset - the FlatCam Face dataset. Experimental results demonstrate the system is highly secure and can achieve a recognition accuracy of 93.97% while maintaining strong user privacy. 
    more » « less