skip to main content


Title: Masked Face Analysis via Multi-Task Deep Learning
Face recognition with wearable items has been a challenging task in computer vision and involves the problem of identifying humans wearing a face mask. Masked face analysis via multi-task learning could effectively improve performance in many fields of face analysis. In this paper, we propose a unified framework for predicting the age, gender, and emotions of people wearing face masks. We first construct FGNET-MASK, a masked face dataset for the problem. Then, we propose a multi-task deep learning model to tackle the problem. In particular, the multi-task deep learning model takes the data as inputs and shares their weight to yield predictions of age, expression, and gender for the masked face. Through extensive experiments, the proposed framework has been found to provide a better performance than other existing methods.  more » « less
Award ID(s):
2025234
PAR ID:
10330088
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Imaging
Volume:
7
Issue:
10
ISSN:
2313-433X
Page Range / eLocation ID:
204
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automated face recognition is a widely adopted machine learning technology for contactless identification of people in various processes such as automated border control, secure login to electronic devices, community surveillance, tracking school attendance, workplace clock in and clock out. Using face masks have become crucial in our daily life with the recent world-wide COVID-19 pandemic. The use of face masks causes the performance of conventional face recognition technologies to degrade considerably. The effect of mask-wearing in face recognition is yet an understudied issue. In this paper, we address this issue by evaluating the performance of a number of face recognition models which are tested by identifying masked and unmasked face images. We use six conventional machine learning algorithms, which are SVC, KNN, LDA, DT, LR and NB, to find out the ones which perform best, besides the ones which poorly perform, in the presence of masked face images. Local Binary Pattern (LBP) is utilized as the feature extraction operator. We generated and used synthesized masked face images. We prepared unmasked, masked, and half-masked training datasets and evaluated the face recognition performance against both masked and unmasked images to present a broad view of this crucial problem. We believe that our study is unique in elaborating the mask-aware facial recognition with almost all possible scenarios including half_masked-to-masked and half_masked-to-unmasked besides evaluating a larger number of conventional machine learning algorithms compared the other studies in the literature. 
    more » « less
  2. Automated and contactless face recognition is a widely used machine learning technology for identifying people which has been applied in scenarios like secure login to electronic devices, automated border control, community surveillance, tracking school attendance. The use of face masks has become essential due to the global spread of COVID-19, raising concerns about the performance of recognition systems. Conventional face recognition technologies were primarily designed to work with unmasked faces, and the widespread use of masked face images significantly degrades their performance. To address this understudied issue, we evaluated the performance of six deep learning models, namely, VGG-16, AlexNet, GoogleNet, LeNet, ResNet-50, and FaceNet on masked and unmasked face images. We aim to find out if deep learning models struggle with masked face recognition and identify the models that mitigate the impact of masked face images. We track, and report miss rates for both masked and unmasked images, along with performance metrics like accuracy and F1 scores in this paper. 
    more » « less
  3. Sinibaldi, Edoardo (Ed.)
    The use of face masks by the general population during viral outbreaks such as the COVID-19 pandemic, although at times controversial, has been effective in slowing down the spread of the virus. The extent to which face masks mitigate the transmission is highly dependent on how well the mask fits each individual. The fit of simple cloth masks on the face, as well as the resulting perimeter leakage and face mask efficacy, are expected to be highly dependent on the type of mask and facial topology. However, this effect has, to date, not been adequately examined and quantified. Here, we propose a framework to study the efficacy of different mask designs based on a quasi-static mechanical model of the deployment of face masks onto a wide range of faces. To illustrate the capabilities of the proposed framework, we explore a simple rectangular cloth mask on a large virtual population of subjects generated from a 3D morphable face model. The effect of weight, age, gender, and height on the mask fit is studied. The Centers for Disease Control and Prevention (CDC) recommended homemade cloth mask design was used as a basis for comparison and was found not to be the most effective design for all subjects. We highlight the importance of designing masks accounting for the widely varying population of faces. Metrics based on aerodynamic principles were used to determine that thin, feminine, and young faces were shown to benefit from mask sizes smaller than that recommended by the CDC. Besides mask size, side-edge tuck-in, or pleating, of the masks as a design parameter was also studied and found to have the potential to cause a larger localized gap opening. 
    more » « less
  4. Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences. 
    more » « less
  5. In this paper, we propose a new deep framework which predicts facial attributes and leverage it as a soft modality to improve face identification performance. Our model is an end to end framework which consists of a convolutional neural network (CNN) whose output is fanned out into two separate branches; the first branch predicts facial attributes while the second branch identifies face images. Contrary to the existing multi-task methods which only use a shared CNN feature space to train these two tasks jointly, we fuse the predicted attributes with the features from the face modality in order to improve the face identification performance. Experimental results show that our model brings benefits to both face identification as well as facial attribute prediction performance, especially in the case of identity facial attributes such as gender prediction. We tested our model on two standard datasets annotated by identities and face attributes. Experimental results indicate that the proposed model outperforms most of the current existing face identification and attribute prediction methods. 
    more » « less