skip to main content


Title: Gender and ethnicity classification of Iris images using deep class-encoder
Soft biometric modalities have shown their utility in different applications including reducing the search space significantly. This leads to improved recognition performance, reduced computation time, and faster processing of test samples. Some common soft biometric modalities are ethnicity, gender, age, hair color, iris color, presence of facial hair or moles, and markers. This research focuses on performing ethnicity and gender classification on iris images. We present a novel supervised autoencoder based approach, Deep Class-Encoder, which uses class labels to learn discriminative representation for the given sample by mapping the learned feature vector to its label. The proposed model is evaluated on two datasets each for ethnicity and gender classification. The results obtained using the proposed Deep Class-Encoder demonstrate its effectiveness in comparison to existing approaches and state-of-the-art methods.  more » « less
Award ID(s):
1650474 1066197
NSF-PAR ID:
10053778
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Joint Conference on Biometrics (IJCB)
Page Range / eLocation ID:
666 to 673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agaian, Sos S. ; DelMarco, Stephen P. ; Asari, Vijayan K. (Ed.)
    Iris recognition is a widely used biometric technology that has high accuracy and reliability in well-controlled environments. However, the recognition accuracy can significantly degrade in non-ideal scenarios, such as off-angle iris images. To address these challenges, deep learning frameworks have been proposed to identify subjects through their off-angle iris images. Traditional CNN-based iris recognition systems train a single deep network using multiple off-angle iris image of the same subject to extract the gaze invariant features and test incoming off-angle images with this single network to classify it into same subject class. In another approach, multiple shallow networks are trained for each gaze angle that will be the experts for specific gaze angles. When testing an off-angle iris image, we first estimate the gaze angle and feed the probe image to its corresponding network for recognition. In this paper, we present an analysis of the performance of both single and multimodal deep learning frameworks to identify subjects through their off-angle iris images. Specifically, we compare the performance of a single AlexNet with multiple SqueezeNet models. SqueezeNet is a variation of the AlexNet that uses 50x fewer parameters and is optimized for devices with limited computational resources. Multi-model approach using multiple shallow networks, where each network is an expert for a specific gaze angle. Our experiments are conducted on an off-angle iris dataset consisting of 100 subjects captured at 10-degree intervals between -50 to +50 degrees. The results indicate that angles that are more distant from the trained angles have lower model accuracy than the angles that are closer to the trained gaze angle. Our findings suggest that the use of SqueezeNet, which requires fewer parameters than AlexNet, can enable iris recognition on devices with limited computational resources while maintaining accuracy. Overall, the results of this study can contribute to the development of more robust iris recognition systems that can perform well in non-ideal scenarios. 
    more » « less
  2. Alam, Mohammad S. ; Asari, Vijayan K. (Ed.)
    Iris recognition is one of the well-known areas of biometric research. However, in real-world scenarios, subjects may not always provide fully open eyes, which can negatively impact the performance of existing systems. Therefore, the detection of blinking eyes in iris images is crucial to ensure reliable biometric data. In this paper, we propose a deep learning-based method using a convolutional neural network to classify blinking eyes in off-angle iris images into four different categories: fully-blinked, half-blinked, half-opened, and fully-opened. The dataset used in our experiments includes 6500 images of 113 subjects and contains images of a mixture of both frontal and off-angle views of the eyes from -50 to 50 in gaze angle. We train and test our approach using both frontal and off-angle images and achieve high classification performance for both types of images. Compared to training the network with only frontal images, our approach shows significantly better performance when tested on off-angle images. These findings suggest that training the model with a more diverse set of off-angle images can improve its performance for off-angle blink detection, which is crucial for real-world applications where the iris images are often captured at different angles. Overall, the deep learning-based blink detection method can be used as a standalone algorithm or integrated into existing standoff biometrics frameworks to improve their accuracy and reliability, particularly in scenarios where subjects may blink. 
    more » « less
  3. We introduce caption-guided face recognition (CGFR) as a new framework to improve the performance of commercial-off-the-shelf (COTS) face recognition (FR) systems. In contrast to combining soft biometrics (e.g., facial marks, gender, and age) with face images, in this work, we use facial descriptions provided by face examiners as a piece of auxiliary information. However, due to the heterogeneity of the modalities, improving the performance by directly fusing the textual and facial features is very challenging, as both lie in different embedding spaces. In this paper, we propose a contextual feature aggregation module (CFAM) that addresses this issue by effectively exploiting the fine-grained word-region interaction and global image-caption association. Specifically, CFAM adopts a self-attention and a cross-attention scheme for improving the intra-modality and inter-modality relationship between the image and textual features. Additionally, we design a textual feature refinement module (TFRM) that refines the textual features of the pre-trained BERT encoder by updating the contextual embeddings. This module enhances the discriminative power of textual features with a crossmodal projection loss and realigns the word and caption embeddings with visual features by incorporating a visualsemantic alignment loss. We implemented the proposed CGFR framework on two face recognition models (Arc- Face and AdaFace) and evaluated its performance on the Multimodal CelebA-HQ dataset. Our framework improves the performance of ArcFace from 16.75% to 66.83% on TPR@FPR=1e-4 in the 1:1 verification protocol. 
    more » « less
  4. We introduce caption-guided face recognition (CGFR) as a new framework to improve the performance of commercial-off-the-shelf (COTS) face recognition (FR) systems. In contrast to combining soft biometrics (e.g., facial marks, gender, and age) with face images, in this work, we use facial descriptions provided by face examiners as a piece of auxiliary information. However, due to the heterogeneity of the modalities, improving the performance by directly fusing the textual and facial features is very challenging, as both lie in different embedding spaces. In this paper, we propose a contextual feature aggregation module (CFAM) that addresses this issue by effectively exploiting the fine-grained word-region interaction and global image-caption association. Specifically, CFAM adopts a self-attention and a cross-attention scheme for improving the intra-modality and inter-modality relationship between the image and textual features, respectively. Additionally, we design a textual feature refinement module (TFRM) that refines the textual features of the pre-trained BERT encoder by updating the contextual embeddings. This module enhances the discriminative power of textual features with a cross-modal projection loss and realigns the word and caption embeddings with visual features by incorporating a visual-semantic alignment loss. We implemented the proposed CGFR framework on two face recognition models (ArcFace and AdaFace) and evaluated its performance on the Multi-Modal CelebA-HQ dataset. Our framework significantly improves the performance of ArcFace in both 1:1 verification and 1:N identification protocol. 
    more » « less
  5. Reliability and accuracy of iris biometric modality has prompted its large-scale deployment for critical applications such as border control and national ID projects. The extensive growth of iris recognition systems has raised apprehensions about susceptibility of these systems to various attacks. In the past, researchers have examined the impact of various iris presentation attacks such as textured contact lenses and print attacks. In this research, we present a novel presentation attack using deep learning based synthetic iris generation. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, we propose a new framework, named as iDCGAN (iris deep convolutional generative adversarial network) for generating realistic appearing synthetic iris images. We demonstrate the effect of these synthetically generated iris images as presentation attack on iris recognition by using a commercial system. The state-of-the-art presentation attack detection framework, DESIST is utilized to analyze if it can discriminate these synthetically generated iris images from real images. The experimental results illustrate that mitigating the proposed synthetic presentation attack is of paramount importance. 
    more » « less