skip to main content


Title: The essential value of long-term experimental data for hydrology and water management: LONG-TERM DATA IN HYDROLOGY
Award ID(s):
1637685
NSF-PAR ID:
10053906
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Water Resources Research
Volume:
53
Issue:
4
ISSN:
0043-1397
Page Range / eLocation ID:
2598 to 2604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
    Abstract The stable isotope ratios of oxygen and hydrogen in polar ice cores are known to record environmental change, and they have been widely used as a paleothermometer. Although it is known to be a simplification, the relationship is often explained by invoking a single condensation pathway with progressive distillation to the temperature at the location of the ice core. In reality, the physical factors are complicated, and recent studies have identified robust aspects of the hydrologic cycle’s response to climate change that could influence the isotope-temperature relationship. In this study, we introduce a new zonal-mean isotope model derived from radiative transfer theory, and incorporate it into a recently developed moist energy balance climate model (MEBM), thus providing an internally consistent representation of the tight physical coupling between temperature, hydrology, and isotope ratios in the zonal-mean climate. The isotope model reproduces the observed pattern of meteoric δ 18 O in the modern climate, and allows us to evaluate the relative importance of different processes for the temporal correlation between δ 18 O and temperature at high latitudes. We find that the positive temporal correlation in polar ice cores is predominantly a result of suppressed high-latitude evaporation with cooling, rather than local temperature changes. The same mechanism also explains the difference in the strength of the isotope-temperature relationship between Greenland and Antarctica. 
    more » « less
  3. Abstract

    Dissolved organic matter (DOM) acts as an important biogeochemical component of aquatic ecosystems that controls nutrient cycling, influences water quality, and links terrestrial and oceanic carbon pools, yet long‐term studies of how changing environmental drivers alter its abundance and composition are rare. Using a 10‐year, spatially explicit data set from Everglades National Park, a globally significant wetland, we investigated the relationships between DOM quality/quantity and hydrologic/climatic drivers along two contrasting marsh‐estuarine transects based on generalized linear modeling and a cumulative sums analysis. Analyses revealed distinct spatial, seasonal, and interannual patterns in variability of DOC and optical properties. Landscape‐scale seasonal patterns showed an enrichment in microbial‐like and protein‐like DOM during the dry season relative to the wet season. While some compositional constituents varied with the solar calendar, responsive to temperature and photoperiod, others varied with the hydrologic calendar. Independent water level and discharge effects indicated strong hydrologic control on DOM quality that differed between the two transects, evidencing differences in their connectivity to areas of high agricultural activity. Across all sites, a significant long‐term increasing trend in the fluorescence index was observed, associated with a positive correlation with precipitation and also potential changes in agricultural inputs, with other features associated with drought and hurricanes. Lastly, the cumulative sums analysis revealed differences between the two transects in the sensitivity of DOM composition to decreased water levels associated with 30‐year climate scenarios, with the less hydrologically dynamic transect exhibiting greater potential sensitivity.

     
    more » « less