Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces: Graph-theoretic approach for delta channel networks
More Like this
-
During major power system disturbances, when multiple component outages occur in rapid succession, it becomes crucial to quickly identify the transmission interconnections that have limited power transfer capability. Understanding the impact of an outage on these critical interconnections (called saturated cut-sets) is important for enhancing situational awareness and taking correct actions. This paper proposes a new graph theoretic approach for analyzing whether a contingency will create a saturated cut-set in a meshed power network. A novel feature of the proposed algorithm is that it lowers the solution time significantly making the approach viable for real-time operations. It also indicates the minimum amount by which the power transfer through the critical interconnections should be reduced so that post-contingency saturation does not occur. Robustness of the proposed algorithm for enhanced situational awareness is demonstrated using the IEEE-118 bus system as well as a 17,000+ bus model of the Western Interconnection (WI). Comparisons made with different approaches for power system vulnerability assessment prove the utility of the proposed scheme for aiding power system operations during extreme exigencies.more » « less
-
The nature of wave resources usually requires wave energy converter (WEC) components to handle peak loads (i.e., torques, forces, and powers) that are many times greater than their average loads, accelerating equipment degradation. Moreover, due to their isolated nature and harsh operating environment, WEC systems are projected to possess high operations and maintenance (O&M) cost, i.e., around 27% of their leveled cost of energy. As such, developing techniques to mitigate these costs through the application of condition monitoring and fault tolerant control will significantly impact the economic feasibility of grid connected WEC power. Toward this goal, models of faulty components are developed in the open source modeling platform, WEC‐Sim, to estimate the performance and measurable states of a WEC operating with likely device and sensor failures. Two types of faulty component models are then applied to a point absorber WEC model with basic controller damping and spring forces. Resulting changes in device behavior are recorded as a benchmark, and a graph‐theoretic approach is proposed for fault detection and identification utilizing multivariate time series. Simulation results demonstrate that these faults can greatly affect the WEC performance, and that the proposed method can effectively detect and classify different types of faults.more » « less
An official website of the United States government

